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Abstract. There is a gap between theory and implementation of the pi
calculus. It relates to the nu command, also called restriction. In typi-
cal implementations of process calculi (Pict, chemical abstract machine)
the command allocates a new communication channel. This amounts to
discarding top-level restrictions and dispensing with scope extrusion; it
yields a very simple multiset or chemical solution semantics. In contrast,
the pi calculus and the join calculus retain restriction and scope extru-
sion. The gap has previously been finessed or glossed over. We state the
gap formally and prove that, for pi, scopes and fresh name generation
are equally expressive up to full abstraction.

1 Introduction

There is a gap between implementation and theory of the pi calculus. Hitherto
the gap has finessed [12,17] or glossed over [2]. It is a gap of expressiveness be-
tween scope extrusion and fresh name generation. Here we state the gap formally
and prove that the two are equally expressive – they yield the same behavioral
semantics up to full abstraction. This result simplifies and strengthens the re-
sults of [12,17]; we believe it can also be adapted for [2]. We have also found that
the implementation-inspired version of the pi calculus is easier to explain than
the original, at least to programmer audiences.

The gap relates to the nu command. To illustrate the implementation ap-
proach, we consider the following example execution of a pi program. It is taken
from Pict [15], but could equally be taken from CML [1,16] or Klaim [4] or
Facile [13] or the Chemical Abstract Machine [2]. States are written for example
as x, y : P |Q|R – this indicates that two channels x and y exist, and that three
threads P , Q and R are running in parallel.

x, u : νx.(u x) | u(y).(u x|P )

→ x′, x, u : u x′ | u(y).(u x|P ) create fresh channel x′; apply {x′
/x}

→ x′, x, u : x ′x | P{x′
/y} rendezvous on channel u

Consider the first step of the execution:

νx.P | R → P{x′
/x} | R, x′ fresh new

This rule interprets the nu command by creating a new channel – equivalently,
generating a fresh name. (The ν binds more tightly than | does). We might call
this a global semantics, since the rule applies to the entire system and generates
a globally fresh name.
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However, for pi the global semantics is never actually used (except by the
implementors of Pict. . . ). Instead, in the traditional pi calculus semantics, the
execution trace is as follows:

u(y).(x y|P ) | νx.(u x)
≡π u(y).(x y|P ) | νx′.(u x′) alpha-rename x to x′

≡π νx′.(u(y).(x y|P ) | u x′) extrude scope of x′

→π νx′.(xx′ | P{x′
/y}) rendezvous on channel u

Here, nu is not executed. It is retained, and allows for alpha-renaming. The
powerful technique of scope extrusion allows its scope to expand arbitrarily.
Scope extrusion is part of the reversible ‘structural congruence’ ≡π.

Colleagues and reviewers usually challenge that the implementation amounts
simply to extruding all restrictions to top level, and so the two approaches triv-
ially collapse. This is not true, and we answer the challenge immediately because
it is important. Restrictions cannot be extruded through replication. One might
try to extrude only after a replication has been unwrapped; but this requires
scope-extrusion and alpha-renaming, neither of which are present in implemen-
tation, and so the gap remains. A more sophisticated approach, taken by En-
gelfriet [5] in 1996, is to use infinite terms in which each replication is replaced
by an infinite number of copies of itself. This works, and gives a simple multiset
semantics for the pi calculus. But infinite terms are manifestly not present in im-
plementations. The significance of the current work is that it retains finite terms
while achieving the same simple multiset semantics. The proof technique does
not involve ‘extruding all restrictions to top level’. Instead it involves turning
each statement ‘X can be alpha-renamed to Y’ into ‘Given an execution history
which produced X, there must have been possible an alternative execution history
which produced Y.’

The global semantics has some attractive features compared to traditional pi:
the global semantics is how the implementations actually work; in the absence
of scope extrusion it allows de-Bruijn notation for the pi calculus; and it allows
an elegant multiset model where a term is just a multiset of elements u x̃.P ,
u(x̃).P , νx.P . (This is like a chemical soup [2] but where all terms are already
fully heated and no cooling is needed). One naturally wonders whether the global
and traditional semantics are equivalent. ‘Certainly,’ might say Fournet and
Gonthier [7], who use a global semantics in the first half of their paper on the
join calculus and switch to the traditional semantics for the second half with only
the briefest of mentions. ‘Sort of’ might say Turner [18], who makes proofs that
at least a few operational semantics are preserved. ‘Clearly not’ remarked some
colleagues, on the grounds that the rule new above allows an observation on x′.
A chief contribution of this paper (Section 2) is to confirm formally that the two
semantics are indeed equivalent – fully abstract up to barbed congruence. This
then makes it easier to prove correct an implementation; we have used it in [19],
and it should have been used in [12,17].
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νx.P |R →i P{x′
/x}|R Global semantics, where the execution of the command gen-

erates a fresh name x′ /∈ fn(νx.P |R). This is a global
rule, which includes the rest of the system R. The notation
x, y, z : P is sometimes used to keep a list of all names that
exist. Used for instance in Pict [15], CML [1,16], Facile [13]
and the Chemical Abstract Machine [2].

(|x̃|) P
Again a global semantics, but where the set x̃ is the list of
all names that have so far been created during execution.
Used in [11] and [12], and as a proof technique in this paper
(Definition2).

Nx : P
µ−→n P ′

(θx)P
µ−→θ (θx)P ′

νx.(u x|P )
u ( )−→hd Pρ

Fresh semantics The Gabbay-Pitts operator N [8,9,10] and
the abstraction θ [3] indicate that the name x is locally fresh
in this transition. But when transition is composed with
others, the quantifier ensures that it keeps fresh. The final
case [14] uses a permutation ρ to ‘make space’ for new name
that has been emitted.

P |νx.Q ≡π νx.(P |Q)
The traditional pi calculus has scope extrusion and alpha-
renaming as part of its structural congruence ≡π, rather than
as part of reaction. This gives a purely local semantics, as an
alternative to global notions of freshness.

Table 1: Nu approaches

The result actually has some complexity. For instance, the traditional pi
semantics has the context-closure axiom

P →π P ′

P |Q →π P ′|Q

But the same inference cannot be made in the global semantics, as shown by the
counter-example

νx.u x → u x′

νx.u x | x′().P 6→ u x′ | x′().P

Intuitively it should be possible to somehow make the same inference, by indi-
cating that the name x′ should be fresh not just with respect to where it was
created but also with respect to possible contexts.

Several related fresh approaches have been proposed; see Table 1. They keep
freshness information, but their primary goal is a finite form of labelled transition

system – where for instance the emission of a bound name νx.u x.P
u (x′)−→ P{x′

/x}
can be treated just through a single representative x′ rather than all x′. But
unlike the intuition in the previous paragraph, and unlike the global semantics,
these fresh approaches only use their freshness annotations for input and output
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transitions rather than rendezvous. For rendezvous, they revert to restrictions
as in the normal pi calculus, with the concomitant scope extrusion. (If [14] were
adapted to allow τ to be deduced from input and output transitions as is normal,
then it would avoid restrictions like the global semantics; but this adaption seems
impossible).

Our proof uses a different freshness approach. We give an intermediate cal-
culus which has exactly the same operation as the global semantics, but which
keeps a top-level record (|x̃|) of which names have been generated so far in the
entire history of the computation: the ‘old names’. With the history, all axioms
in the pi calculus can be expressed as indirect inferences in our fresh calculus.
The results then lift over to the global semantics – even though the indirect
inference lemmas do not.

Barbs and free names

We remark that the operations in the other fresh approaches do not coincide
with the global semantics, and so their results cannot be lifted into the global
semantics. We also remark that they use labeled transitions; we use barbed
bisimulation instead, which is easier to apply to diverse implementation models.
For instance in [19] we give a broadcast implementation of pi and prove it correct.
Broadcast uses entirely different labeled transitions, but its barbs are just the
same as those of the pi calculus.

In normal barbed bisimulation, all free names are considered observable (‘to
have barbs’). This works because the set of free names does not normally in-
crease. By contrast, in the global pi calculus, the set of free names can increase
and decrease. For this reason we parameterise observation just on the set of
names that were initially free – so, on page 1, the x′ is not observable. Similarly
the reflexive chemical machine [6] is parameterised for observation on just a sin-
gle distinguished name test ; it turns out that this is sufficient. Sewell [17] also
uses a finite parameterisation {keyboard,mouse, screen}, although his set of free
names never decreases and so the parameterisation is not actually necessary.

Sewell’s work, like that of Turner [18], is concerned with proving the cor-
rectness of the Pict implementation [15] of the pi calculus. Pict is a determinis-
tic single-machine implementation, isolated except through interaction with the
user. Because it is deterministic, it is necessarily not bisimilar with the (non-
deterministic) pi calculus. Turner instead just proves that the machine is ‘valid’
(never makes reactions disallowed by the pi calculus) and ‘non-blocking’ (if the
calculus admits some reaction, the machine also admits some reaction). Sewell
extends the results to a may-testing preorder. These limited results are appro-
priate for a single isolated machine such as Pict, as Sewell argues. But they are
no longer appropriate as we move to distributed implementations and use the
pi calculus to program mobile devices or write web services. A distributed im-
plementation really is non-deterministic, due to network vagaries, and so a full
bisimulation result is possible. Moreover, a web service or other component might
be placed in arbitrary contexts, not just run in isolation, so bisimulation congru-
ence rather than just bisimulation is important. For example, in the sequel [19]
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we use distributed atomic transactions as our implementation. Non-blocking on
its own is not enough to prove the non-triviality required of a transaction, but
bisimulation is. Bisimulation on its own is not enough to prove compositionality
of transactions, but bisimulation congruence is.

By using fresh names and eliminating scope extrusion, we obtain an appealing
multiset model for the pi calculus (Table 2). A different form of multiset was
previously given by Engelfriet [5]. He retains restrictions, so that his barbs match
those of the pi calculus; and he uses scope extrusion to assume a normal form
in which all restrictions are extruded to the top level. Actually it is not possible
to extrude restrictions through a replication, so Engelfriet first replaces any
replicated term !P with an infinite number of copies of P (each of which do then
allow restrictions to be pushed out). The significance of our current work is to
show that top-level restrictions are unnecessary, and so the multiset can remain
finite.

Our idea is that, in general, traditional co-inductive techniques will be used
at compile-time to prove that an original program is bisimilar to some optimised
version of itself; then use Theorem 1 to prove that the two are bisimilar also in a
global semantics; then use some implementation-correctness result to prove that
two are also bisimilar in some particular implementation. The reason for using
global semantics is that it simplifies the implementation-correctness results.

2 Global pi calculus

The global pi calculus is defined in Figure 2. Note that terms in this calculus
have exactly the same syntax as those in the pi calculus; the difference is in
their operational semantics. Strikingly, the global pi calculus allow terms to be
considered purely as multisets – this is an important simplification.

We illustrate the global calculus with some examples. The step νx.x → x ′

creates a new name (it holds for any fresh x′). The example from page 1 is

νx.u x | u(y).(u x|P ) → u x′ | u(y).(u x|P ) create fresh channel x′

→ x ′x | P{x′
/y} react

The following two programs are barbed congruent: νx.x ≈ 0. Essentially this
is because in any context C[νx.x ], when the fresh name x′ is created, then x′

will be fresh also with respect to the context (and hence unobservable by the
context).

There is a subtlety here. The observation relation ↓ is a blunt tool which
observes every free name, even if no context could ever observe it in practice. To
defend against this, the pi calculus retains restriction and disallows observation
of restricted names. This amounts to adding part of the contextual equivalence
semantics into the operational semantics. The global pi calculus achieves the
same end but without compromising the operational semantics – instead it pa-
rameterises the observation relation according to which names it can feasibly
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Global pi calculus has terms P and contexts C as follows. We identify terms P ≡ Q
up to commutativity and associativity of |, with 0 as identity.

P ::= u x̃.P
∣∣ u(x̃).P

∣∣ !u(x̃).P
∣∣ νx.P

∣∣ P |P
∣∣ 0

C ::= u x̃.C
∣∣ u(x̃).C

∣∣ !u(x̃).C
∣∣ νx.C

∣∣ C|P
∣∣ P |C

∣∣
Reaction relation is

(νx.P ) | R → P{x′
/x} | R x′ /∈ fn(νx.P |R) (new)

u ỹ.P | u(x̃).Q | R → P | Q{ỹ/x̃} | R (react)

u ỹ.P | !u(x̃).Q | R → P | Q{ỹ/x̃} | !u(x̃).Q | R (replication)

Barbs (observations) are as follows: x is observable in P , written P ↓ x, when

u x̃.P ↓ u u(x̃).P ↓ u !u(x̃).P ↓ u P | Q ↓ u if P ↓ u or Q ↓ u

Multisets are an equivalent formulation of the global pi calculus: a term P is a multiset
of elements u x̃.P , u(x̃).P , !u(x̃).P and νx.P ; new operates on one element of the
multiset, reaction on two; observation P ↓ u is when at least one element is observable
on u.
Barbed bisimulation with respect to z̃ is as follows. Write

z̃→ for → such that no

x′ ∈ z̃ is ever chosen fresh by new. Write P ↓z̃ u when P ↓ u and u ∈ z̃. Write
z̃⇒ for

z̃→
∗

and ⇓z̃ for
z̃⇒↓z̃. Then barbed bisimulation with respect to z̃ is the largest symmetric

relation
z̃
≈ such that whenever P

z̃
≈ Q then (1) P ↓z̃ u implies Q ⇓z̃ u and (2) P

z̃→ P ′

implies Q
z̃⇒

z̃
≈ P ′.

Barbed congruence written P ≈ Q holds if for all contexts C, then C[P ]
z̃
≈ C[Q] for

z̃ = fn(C[P ]|C[Q]).

Table 2: The global pi calculus. Bound names bn(P ) and free names fn(P ) are standard:
x is bound in νx.P and x̃ is bound in u(x̃).P and !u(x̃).P . Note that reduction is closed
only under associativity and commutativity of |: it is not closed under scope extrusion,
alpha-renaming or contexts.

observe. Writing
ṽ
≈ for a bisimulation which only ever observes names in ṽ, then

νx.(x |y )
y
≈ y and x ′|y

y
≈ y and P

∅
≈ Q

The pi calculus uses restrictions to ensure that, with respect to bisimulation of
C[P ] and C[Q], the observation relation never observes any names that were not
originally free in C[P ] or C[Q]. The global pi calculus uses its parameterised
observation instead of restrictions for the same end. Hence the two calculi make
the same judgement as to whether P and Q are behaviourally equivalent:

Theorem 1 P ≈π Q if and only if P ≈ Q.
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Traditional pi calculus has terms P and contexts C as in Table 2. We identify terms
P ≡π Q as follows:

P |0 ≡π P P |Q ≡π Q|P P |(Q|R) ≡π (P |Q)|R !P ≡π P | !P

νx.νy.P ≡π νy.νx.P νx.0 ≡π 0

x /∈ fn P implies νx.(P |Q) ≡π P |νx.Q and νy.P ≡π νx.P{x/y}

P ≡π Q

Q ≡π P

P ≡π Q

νx.P ≡π νx.Q

P ≡π Q

P |R ≡π Q|R
P ≡π Q Q ≡π R

P ≡π R

Reaction relation is as follows:

u ỹ.P | u(x̃).Q →π P | Q{ỹ/x̃}

P →π P ′

νx.P →π νx.P ′
P →π P ′

P |Q →π P ′|Q
P ≡π Q →π Q′ ≡π P ′

P →π P ′

Barbs (observations) are as follows: x is observable in P , written P ↓ x, when

u x̃.P ↓π u u(x̃).P ↓π u !u(x̃).P ↓π u P |Q ↓π u if P ↓π u or Q ↓π u

νx.P ↓π u if P ↓π u and u 6= x

Barbed bisimulation
·
≈π is as in Table 2, using ↓π and →π. Barbed congruence,

written P ≈π Q, holds if for all contexts C then C[P ]
·
≈π C[Q].

Table 3: The pi calculus.

The proof of this theorem is substantial. It involves considering all the rich
behaviour afforded to the pi calculus from its compositionality, restrictions and
structural congruence, and deriving it all from scratch for the global pi calculus.
The proof structure is: define the fresh pi, an intermediate calculus; establish its
‘rich behaviour’; prove full abstraction first between pi and fresh pi; then also
with ‘observation up to ṽ’; then also with global pi. In what follows we merely
omit the (mostly straightforward) proofs. It might be that the theory of FM
equivariance [8] allows for simpler proofs.

As mentioned we reason in an intermediate calculus, the fresh pi calculus.
Terms in the fresh calculus have the form (|x̃|) P , where x̃ are the names that have
so far been created fresh. This fresh calculus has the same operational semantics
as the global pi calculus, but its annotation (|x̃|) allows compositionality to be
derived indirectly. For instance, if executing P causes some names z̃ to be created
(| |) P ⇒f (|z̃|)P ′, then we can prove that an alternate execution must also have
been possible: (| |)P ⇒f (|z̃′|)P ′{z̃′/z̃}. And that therefore an alternate execution
must also have been possible in the presence of a parallel term R, if z̃′ /∈ fn(R):
(| |) P |R ⇒f (|z̃′|)P ′{z̃′/z̃}|R. In the pi calculus these examples are all axioms. In
the fresh pi calculus they are indirect derivations. In the global pi calculus the
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answers are all still valid (P ⇒ P ′ and P ⇒ P ′{z̃′/z̃} and P |R ⇒ P ′{z̃/z̃}|R)
but they cannot be derived from each other. A form of (|x̃|) was previously used
by the author along with Gardner and Laneve [11,12]; the current results simplify
and extend that earlier work.

Definition 2 (Fresh pi) Terms in the fresh pi calculus have the form (|x̃|)P
where all x̃s are distinct and their order immaterial; P and contexts C are as
in Table 2. Identify terms (|x̃|) P ≡f (|ỹ|) Q when ỹ is a permutation of x̃, and P
and Q are identical up to commutativity and associativity of | with 0 as identity.
The heating rule ⇀f and the reaction rule →f are

(|z̃|) R | νx.P ⇀f (|z̃x′|) R | P{x′
/x} where x′ 6∈ {z̃} ∪ fn(R|νx.P )

(|z̃|) R | u x̃.P | u(ỹ).Q →f (|z̃|) R | P | Q{x̃/ỹ}
(|z̃|) R | u x̃.P | !u(ỹ).Q →f (|z̃|) R | P | Q{x̃/ỹ} | !u(ỹ).Q

Observations are (|z̃|) P ↓f u if u /∈ z̃ and P ↓ u as in Table 2. Barbed
bisimulation is as follows. Write ⇒f for (⇀∗

f→∗
f )∗ and ⇓f for ⇒f↓f . Then

barbed bisimulation is the largest symmetric relation
·
≈f such that whenever P

·
≈f

Q then (1) P ↓f u implies Q ⇓f u and (2) P →f P ′ or P ⇀f P ′ implies
Q ⇒f

·
≈f P ′. Two terms are barbed congruent, written (|x̃|)P ≈f (|ỹ|) Q, if

for all contexts C with x̃ỹ ∩ fn(C) = ∅ then (|x̃|) C[P ]
·
≈f (|ỹ|)C[Q]. Barbed

bisimulation with respect to names
z̃
≈f is as in Table 2, where (|x̃|) P ↓ṽ

f u

means (|x̃|) P ↓f u with u ∈ ṽ, and ṽ
⇀f means a new transition where no name

in x′ ∈ ṽ is chosen as the fresh name.

Note that every sequence of transitions has the form (|x̃|) P ⇒ (|z̃x̃|) P ′. This is
because the transitions only ever add new names to the list (|x̃|) . Note also that
fn(νz̃.P ′) ⊆ fn(P ), and that if all names in x̃ are pairwise distinct then so are
all names in z̃x̃. The remainder of the proof uses the following lemmas, in order.

Lemmas. Alternatives to compositionality and structural congruence in transi-
tions. If (|x̃|) P ⇒f (|x̃z̃|) P ′ then

A1. (Old-intr) (|x̃ỹ|) P ⇒f (|x̃ỹz̃|) P ′ where ỹ ∩ {x̃, z̃} = ∅
A2. (Old-elim) (| |) P ⇒f (|z̃|) P ′

A3. (Old-alpha) (|x̃′|) P ⇒f (|x̃′z̃|) P ′ where x̃′ ∩ z̃ = ∅
A4. (Subst) (|x̃|) P{u/v} ⇒f (|x̃z̃|) P ′{u/v} where u /∈ z̃

A5. (New-alpha) (|x̃|) P ⇒f (|z̃′x̃|) P ′{z̃′/z̃} where z̃′ are pairwise distinct and z̃′ ∩
({x̃} ∪ fnP ) = ∅

A6. (Par-intr) (|x̃|) P |Q ⇒f (|x̃z̃|) P ′|Q where fnQ ∩ z̃ = ∅

Alternatives to compositionality and structural congruence up to congruence:

B1. (Old-alpha) (|x̃|) P ≈f (|x̃′|)P{x̃′
/x̃} where x̃′ /∈ fn(νx̃.P ) and x̃′ are pairwise

distinct. (Prove this and the following with the Context Lemma).
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B2. (Old-for-new) (| |) νx.P ≈f (|x′|) P{x′
/x} where x /∈ fn(R).

B3. (Old-intr) If (|x̃|) P ≈f (|ỹ|) Q then (|x̃z̃|)P ≈f (|ỹz̃|)Q for z̃ ∩ x̃ỹ = ∅.
B4. (Old-elim) If y /∈ fnP then (|x̃y|) P ≈f (|x̃|) P . The proof is tricky; use S=

{((|x̃y|)P,B) : B
·
≈f (|x̃|) P and y /∈ x̃ ∪ fn(P )} and prove it is a

·
≈f .

B5. (Structural) If P ≡π Q then (| |)P ≈f (| |) Q.

Connection between fresh pi and the pi calculus:

C1. P ⇒π P ′ implies (| |) P ⇒f≈f (| |) P ′

C2. (|x̃|) P ⇒f (|x̃z̃|) P ′ implies νx̃.P ⇒π νx̃z̃.P ′

C3. P ↓π u implies (| |) P ⇓f u

C4. (Bisimulation) νx̃.P
·
≈π νỹ.Q if and only if (|x̃|) P

·
≈f (|ỹ|)Q.

C5. (Full abstraction) νx̃.P ≈π νỹ.Q if and only if (|x̃|) P ≈f (|ỹ|)Q.

For Part 4 in the forward direction, construct S= {(νx̃.P, νỹ.Q) : (|x̃|) P
·
≈f

(|ỹ|) Q} and prove that it is a
·
≈π. In the reverse direction, S =

{
(A,B) : A

·
≈f

(νx̃).P, B
·
≈f (νỹ).Q, νx̃.P

·
≈π νỹ.Q

}
.

Connection with fresh pi using ‘observation up to ṽ’:

D1. (|x̃|) P
ṽ⇒f (|x̃z̃|) P ′ implies (|x̃|) P ⇒f (|x̃z̃|) P ′

D2. (|x̃|) P ⇒f (|x̃z̃|) P ′ implies for every ṽ then (|x̃|)P
ṽ⇒f

·
≈f (|x̃z̃|) P ′

D3. (|x̃|) P ⇓ṽ
f u implies (x̃|) P ⇓f u

D4. (|x̃|) P ⇓f u and u ∈ ṽ implies (|x̃|) P ⇓ṽ
f u

D5. (Bisimulation) If (|x̃|) P
·
≈f (|ỹ|) Q then (x̃|) P

ṽ
≈f (|ỹ|) Q for all ṽ. And if

(|x̃|)P
ṽ
≈f (|ỹ|)Q for some ṽ ⊇ fn(νx̃.P |νỹ.Q), then (|x̃|) P

·
≈f (|ỹ|) Q.

D6. (Full abstraction) If (|x̃|) P ≈f (|ỹ|) Q then for all contexts C and all ṽ then

(|x̃|)C[P ]
ṽ
≈f (|ỹ|) C[Q]. And if for all contexts C there exists some ṽ ⊇

fn(νx̃.C[P ]|νỹ.C[Q]) such that (|x̃|) C[P ]
ṽ
≈f (|ỹ|) C[Q], then (|x̃|)P ≈f (|ỹ|)Q.

For Part 5 forwards, use S= {((|x̃|) P, (|ỹ|) Q) : (|x̃|) P
·
≈f (|ỹ|) Q} and prove it is

a
ṽ
≈f for all ṽ. For the reverse, use Sṽ= {(A,B) : A

·
≈f (|x̃|)P

ṽ
≈f (|ỹ|) Q

·
≈f

B such that fn(νx̃.P |νỹ.Q) ⊆ ṽ} and prove it is a
·
≈f .

Connection between global pi and fresh pi, both using ‘observation up to ṽ’:

E1. (|x̃|)P
ṽ⇒f (|x̃z̃|)P ′ implies P

ṽ⇒ P ′

E2. P
ṽ⇒ P ′ implies for all x̃ there exists z̃ such that (|x̃|) P

ṽ⇒f
ṽ
≈f (|x̃z̃|)P ′ and

z̃ ∩ ṽ = ∅
E3. (|x̃|)P ⇓ṽ

f u implies P ⇓ṽ u

E4. P ⇓ṽ u implies for all x̃ such that x̃ ∩ ṽ = ∅ then (|x̃|) P ⇓ṽ
f u

E5. (Bisimulation) P
ṽ
≈ Q if and only if (| |) P

ṽ
≈f (| |) Q

E6. (Full abstraction) P ≈ Q if and only if (| |) P ≈f (| |) Q

9



Part 2 is by induction on the derivation of ṽ⇒. In the new case, either the freshly
created name z′ is in x̃ or not. If it is, then react first to make z′′, then use
(old-elim) to remove z′ from x̃, then do {z′/z′′}. For Part 5 forwards, construct

Sṽ= {(P,Q) : ∃x̃, ỹ : (|x̃|)P
ṽ
≈f (|ỹ|) Q and ṽ ∩ x̃ỹ = ∅} and prove it is a

ṽ
≈f . For

Part 5 reverse, construct Sṽ= {(A,B) : ∃x̃, ỹ : A
ṽ
≈f (|x̃|) P, P

ṽ
≈ Q, (|ỹ|) Q

ṽ
≈f

B and x̃ỹ ∩ ṽ = ∅}.
Theorem 1 follows from C5, D6 and E6. �

3 Discussion

We have given a global semantics for the pi calculus, one which uses no scope
extrusion and has a simple multiset semantics. It treats the command νx.P as
a command to create a new (fresh) name, and it keeps no record of the ‘old’
names that have been previously created. It has minimal structural congruence,
making it close to how an implementation works. It is a fully abstract model for
standard barbed congruence in the pi calculus.

To prove it correct with respect to the pi calculus, we also gave an interme-
diate fresh pi calculus which retains an explicit record of the old names: (|x̃|) P
is a program P which has so far created the names x̃. This fresh calculus has
simple implementable reaction rules (like the global semantics) but its notation
(|x̃|) allows an easy comparison with barbed semantics in the pi calculus.

In the pi calculus, a restricted name’s scope can be extruded or ‘intruded’.
This demarcates the set of programs which might know about the name – any-
thing outside the scope does not know about it. We have eliminated scope extru-
sion entirely. But Greg Meredith has suggested in discussion that scope knowl-
edge might prove useful for distributed error recovery: if the machine hosting
channel x should crash, and a replacement channel x′ is brought online, then
only those names within the scope of x need be told about the replacement
channel.

With respect to the idea creating fresh names (globally unique), Robin Milner
has suggested in discussion that such freshness is not possible in principle. For
instance, if the Internet on our ‘globe’ should be merged with that of Mars,
then our already-created names might clash with those of the martians. This is
a light-hearted example, but it illustrates the striking power of scope extrusion.
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Appendix: Proofs omitted from main paper.

Lemma 3 If (|x̃|) P ⇒f (|x̃z̃|) P ′ then

1. (Old-intr) (|x̃ỹ|) P ⇒f (|x̃ỹz̃|) P ′ where ỹ ∩ {x̃, z̃} = ∅
2. (Old-elim) (| |)P ⇒f (|z̃|)P ′

3. (Old-alpha) (|x̃′|) P ⇒f (|x̃′z̃|) P ′ where x̃′ ∩ z̃ = ∅
4. (Subst) (|x̃|)P{u/v} ⇒f (|x̃z̃|)P ′{u/v} where u /∈ z̃

5. (New-alpha) (|x̃|) P ⇒f (|z̃′x̃|) P ′{z̃′/z̃} where z̃′ are pairwise distinct and z̃′ ∩
({x̃} ∪ fnP ) = ∅

6. (Par-intr) (|x̃|) P |Q ⇒f (|x̃z̃|) P ′|Q where fnQ ∩ z̃ = ∅

Proof. Part 1 is a simple induction on the derivation of ⇒f . So is Part 2. In
its induction step, we assume the derivation

(|x̃|) P ⇒f (|x̃z̃1|) P ′ (|x̃z̃1|)P ′ ⇒f (|x̃z̃1z̃2|) P ′′

(|x̃|) P ⇒f (|x̃z̃1z̃2|) P ′′

Note that z̃1 ∩ z̃2 = ∅, since reduction always results in pairwise-distinct names.
Then

(| |) P ⇒f (|z̃1|)P ′ (i.h.)
(| |) P ′ ⇒f (|z̃2|) P ′′ (i.h.) z̃1 ∩ z̃2 = ∅

(|z̃1|) P ′ ⇒f (|z̃1z̃2|) P ′′ old-intr

(| |) P ⇒f (|z̃1z̃2|) P ′′ trans.

completing the proof.
Part 3 follows from applying old-elim to remove x̃ and then old-intr to add

x̃′.
Part 4 is another induction on the derivation of ⇒f . For the new base case,

we assume (|x̃|) R|νx.P ⇀f (|x̃|)R|P{z/x} for z /∈ {x̃}∪ fn(R|νx.P ). There are the
usual capture-avoiding issues; let us ignore them and assume neither u nor v is
x. Then we must deduce

(|x̃|)R{u/v} | νx.P{u/v} ⇀f (|zx̃|) R{u/v} | P{u/v}

This holds whenever z /∈ {x̃} ∪ fn(R{u/v}|νx.P{u/v}. We already know that
z /∈ x̃. By the side condition on the statement of Part 4, z 6= u. And the free
names of R{u/v} are a subset of {u} ∪ fn(R). Hence the desired heating step
holds.

Part 5 is again an induction on the derivation of ⇒f . Consider the induction
step. Assume the derivation

(|x̃|) P ⇒f (|x̃z̃1|) P ′ (|x̃z̃1|) P ′ ⇒f (|x̃z̃1z̃2|)P ′′

(|x̃|) P ⇒f (|x̃z̃1z̃2|) P ′′

and assume z̃′
1z̃

′
2 are pairwise distinct and z̃′

1z̃
′
2∩(x̃∪fnP ) = ∅. The first induction

hypothesis is that (|x̃|)P ⇒f (|x̃z̃′
1|)P ′{z̃′1/z̃1} since z̃′

1 ∩ (x̃ ∪ fnP ) = ∅. For the
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second induction hypothesis, with the assumption z̃′
2∩(x̃z̃1∪ fnP ) = ∅, we make

the following inferences:

(|x̃z̃1|) P ′ ⇒f (|x̃z̃1z̃
′
2|) P ′′{z̃′2/z̃2} (i.h.), since z̃′

2 ∩ (x̃z̃1 ∩ fnP ) = ∅
(| |) P ′ ⇒f (|z̃′

2|)P ′′{z̃′2/z̃2} (old-elim), since z̃′
1 ∩ z̃′

2 = ∅
(| |) P ′{z̃′1/z̃1} ⇒f (|z̃′

2|)P ′′{z̃′2/z̃2}{z̃
′
1/z̃1} (subst), since z̃′

1 ∩ z̃′
2 = ∅

(| |) P ′{z̃′1/z̃1} ⇒f (|z̃′
2|) P ′′{z̃′1z̃′2/z̃1z̃2} (*)

(|x̃z̃′
1|) P ′{z̃′1/z̃1} ⇒f (|x̃z̃′

1z̃
′
2|) P ′′{z̃′1z̃′2/z̃1z̃2} (old-intr), since x̃1z̃

′
1 ∩ z̃′

2 = ∅

The result follows from transitivity of the first induction hypothesis, and this
final inference. In the inference marked (*) we assume that the substitutions
{z̃′2/z̃2}{z̃

′
1/z̃1} can be re-ordered. To achieve this, first prove the special case

of Part 5 where all names z̃′ are completely fresh, and so (*) is satisfied. Then
deduce the general Part 5 by applying this special case once to rename to the
completely fresh z̃′, and a second time to z̃′′ which are then allowed to clash
with the original z̃.

Part 6 is a straightforward induction on the derivation of ⇒f . �

Lemma 4

1. (Old-alpha) (|x̃|) P ≈f (|x̃′|) P{x̃′
/x̃} where x̃′ /∈ fn(νx̃.P ) and x̃′ are pairwise

distinct.
2. (Old-for-new) (| |) νx.P ≈f (|x′|)P{x′

/x} where x /∈ fn(R).
3. (Old-intr) If (|x̃|) P ≈f (|ỹ|) Q then (|x̃z̃|) P ≈f (|ỹz̃|) Q for z̃ ∩ x̃ỹ = ∅.
4. (Old-elim) If y /∈ fnP then (|x̃y|) P ≈f (|x̃|) P .
5. (Structural) If P ≡π Q then (| |) P ≈f (| |) Q.

Proof. For Part 1, by the Context Lemma it is enough to prove (|x̃|) Pσ|R
·
≈f

(|x̃′|) P{x̃′
/x̃}σ|R where {x̃x̃′} ∩ (dom(σ)∪ fn(R)) = ∅. This degenerates to prov-

ing just (|x̃|) P
·
≈f (|x̃′|)P{x̃′

/x̃}. Construct S= {((|x̃|)P, (|x̃′|) P{x̃′
/x̃})} for all

x̃, x̃′, P such that x̃′ /∈ fn(νx̃.P ) and x̃ is pairwise distinct. If the left hand side
makes a reaction (|x̃|) P →f (|x̃|) P ′ then it is matched exactly by (|x̃′|)P{x̃′

/x̃} →f

(|x̃′|)P ′{x̃/x̃}. If the left hand side makes a heating step

(|νx̃|) νz.P |R ⇀f (|x̃z′|) P{z′/z}|R (1)

for any z′ /∈ x̃ ∪ fn(νz.P |R). This is matched on the right hand side by

(|νx̃′|) νz.P{x̃′
/x̃}|R ⇀f (|x̃′z′′|) P{x̃′

/x̃}{z′′/z}|R (2)

for all z′′ /∈ x̃′ ∪ fn(νz.P |R). But notice that the right hand side of Equation 2 is
obtained by the substitution {z′′/z} on that of Equation 1, and hence they are
related in S.

As for reactions on the right hand side of S being matched by those on the
left, the left is obtained by substituting {x̃/x̃′} on the right and so the same
argument applies.
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For Part 2, via the Context Lemma, it is enough to prove over contexts σ|R.
Without loss of generality, suppose this σ did not involve x or x′. Construct
S= {((| |) νx.Pσ|R, (|x′|) Pσ{x′

/x}|R)}∪
·
≈f for all x′ /∈ fnR. It is clearly a

·
≈f :

any transition the right can make, the left can too after first doing

(| |) νx.Pσ|R ⇀f (|x′|) Pσ{x′
/x}|R.

Any transition the left can make is either from R (in which case the results are
matched directly); or else it is a heating transition

(| |) νx.Pσ|R ⇀f (|x′′|) Pσ{x′′
/x}|R.

And this version with x′′ is bisimilar to the version with x′, by Part 1.
For Part 3, by the Context Lemma, it is enough to prove (|x̃z̃|) Pσ|R

·
≈f

(|ỹz̃|) Qσ|R. Without loss of generality assume z̃x̃ỹ ∩ fnR = ∅, and |z̃| > 0. Take
σ = {ũ/ṽ}. By assumption, (x̃|) P

·
≈f (|ỹ|) Q in all contexts C. In particular, put

C = νz̃.(z 1ũ|z1(ṽ). |R). By Part 2,

(|x̃|) νz̃.(z 1ũ|z1(ṽ).P |R)
·
≈f (|x̃z̃|) z 1ũ|z1(ṽ).P |R

and likewise for Q. Since z1 6∈ fnR this term is bisimilar to its reacted form:

(|x̃z̃|) z 1ũ|z1(ṽ).P |R
·
≈f (|x̃z̃|) P{ũ/ṽ}|R

and likewise for P . Because (x̃|) P
·
≈f (|ỹ|) Q in the initial context C, and following

the chain of bisimulations for P and Q, we get

(|x̃z̃|) Pσ|R
·
≈f (|ỹz̃|) Qσ|R

as desired.
For Part 4, by the Context Lemma, it is enough to prove (|x̃y|) Pσ|R

·
≈f

(|x̃|) Pσ|R. This degenerates to proving just (|x̃y|)P
·
≈f (|x̃|) P . Construct

S= {((|x̃y|) P,B) : B
·
≈f (|x̃|)P and y /∈ x̃ ∪ fn(P )}.

Suppose the left side makes a transition (|x̃y|)P ⇒f (|x̃yz̃|) P ′. By Lemma 3.2
(old-elim), (|x̃|) P ⇒f (|x̃z̃|)P ′. Because B

·
≈f (|x̃|) P then B ⇒f B′ ·

≈f (|x̃z̃|) P ′.
Hence (|x̃yz̃|) P ′ S B′ as required.

Suppose the left side makes an observation (|x̃y|)P ↓f u. This comes from
P ↓ u with u /∈ x̃y. Hence also (|x̃|)P ↓u as required.

The reverse direction is more difficult. That is because a transition (|x̃|)P ⇒f

(|x̃z̃|)P ′ cannot necessarily be matched by (|x̃y|)P (in the case that y ∈ z̃). Instead
we work up to bisimulation. Suppose the right side makes a transition B ⇒f B′.
The following commutative diagrams applies:

B ⇒f B′
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·
≈f

·
≈f by construction B

·
≈f (|x̃|) P

(|x̃|) P ⇒f (|x̃z̃|) P ′

=
·
≈f Lemma 3.5 (new-alpha) and Part 4 (old-alpha)

(|x̃|) P ⇒f (|x̃z̃′|) P ′{z̃′/z̃} for some z̃′ : z̃ ∩ (x̃y ∪ fnP ) = ∅
Lemma 3.1 (old-intr) since y /∈ x̃z̃′

(|x̃y|) P ⇒f (|x̃yz̃′|) P ′{z̃′/z̃}

And because B′ ·
≈f (|x̃z̃′|) P ′{z̃′/z̃} then (|x̃yz̃′|)P ′{z̃′/z̃} S B′ as required.

Suppose the right side makes an observation B ↓f u. By construction B
·
≈f

(|x̃|) P then also (|x̃|) P ⇓f u, or in other words

(|x̃|) P ⇒f (|x̃z̃|) P ′ ↓f u

with P ′ ↓ u and u /∈ x̃z̃. By Lemma 3.5 (new-alpha),

(|x̃|)P ⇒f (|x̃z̃′|)P ′{z̃′/z̃}

for some z̃′ such that z̃′ ∩ (x̃y ∪ fnP ) = ∅. By Lemma 3.1 (old-intr),

(|x̃y|) P ⇒f (|x̃yz̃′|) P ′{z̃′/z̃}.

From above, P ′ ↓ u and u /∈ z̃. Hence also P ′{z̃′/z̃} ↓ u. Now prove that u 6= y
as follows. Given the reduction, then fn(νz̃′.P ′{z̃′/z̃}) ⊆ fn(P ). By assumption,
y 6 fn(P ). Hence either y ∈ z̃′ or y /∈ fn(P ′{z̃′/z̃}). From above, the first does not
hold; therefore the second does; therefore y 6= u.

Thus it is established that u /∈ x̃yz̃′ and P ′{z̃′/z̃} ↓ u. Hence (x̃yz̃′|) P ′{z̃′/z̃} ↓
u as required.

For Part 5, prove by induction on the derivation of P ≡π Q.

1. For the commutativity and associativity of | with 0 as identity, these rules
are present also in fresh pi.

2. For νx.νy.P ≡π νy.νx.P , use Part 2, and recall that the fresh names (|xy|)
constitute a set and so can be reordered:

(| |) νx.νy.P ≈f (|xy|) P ≈f (|yx|) P ≈f (| |) νy.νx.P

3. For νx.(P |Q) ≡π P |νx.Q with x /∈ fnP , Part 2 says

(| |) νx.Q ≈f (|x|) Q.

This is a congruence in all contexts whose free names do not clash with x,
so apply the context P | :

(| |) P |νx.Q ≈f (|x|) P |Q.

Finally, Part 2 on the right hand side gives ≈f νx.(P |Q).
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4. For νy.P ≡π νx.P{x/y} with x /∈ fnP , Part 1 gives (|y|)P ≈f (|x|)P{x/y}.
Applying Part 2 to both sides yields the result.

5. For νx.0 ≡π 0, this follows from Part 4.
6. Symmetry and transitivity of ≡π are matched by symmetry and transitivity

of ≈f . Closure under contexts νx. and |Q is matched by closure under
contexts of ≈f .

7. For !P ≡π P |!P , by the Context Lemma and without loss of generality it is
enough to prove

(| |) !u(x̃).P |R
·
≈f (| |) u(x̃).P |!u(x̃).P |R.

Therefore construct the smallest S which contains these two terms and also
·
≈f , and prove it is a

·
≈f . Any transitions made by R alone are trivially

matched. Consider the other possibilities.
On the left, the only other possible reaction is when R = u ỹ.R1|R2, giving

(| |) !u(x̃).P | u ỹ.R1 | R2 →f (| |)P{ỹ/x̃} | !u(x̃).P | R1 | R2. (3)

On the right, this can be matched by reacting with the ‘already-unwrapped’
copy of the replicated input:

(| |) u(x̃).P | !u(x̃).P | u ỹ.R1 | R2 →f (| |) P{ỹ/x̃} | !u(x̃).P | R1 | R2.

The results are identical, and hence in
·
≈f .

On the right, reaction again requires R = u ỹ.R1|R2, and there are two
possible reactions that the right can make:

(| |) u(x̃).P | !u(x̃).P | u ỹ.R1 | R2 →f (| |)P{ỹ/x̃} | !u(x̃).P | R1 | R2

(| |) u(x̃).P | !u(x̃).P | u ỹ.R1 | R2 →f (| |)P{ỹ/x̃} | u(x̃).P | !u(x̃).P | R1 | R2.

The left makes the reaction given in Equation 3. The results are either related
directly by

·
≈f or at least by S.

This completes the proof for Part 4. �

Proposition 5 (Between fresh pi, and the pi calculus)

1. P ⇒π P ′ implies (| |) P ⇒f≈f (| |) P ′

2. (|x̃|) P ⇒f (|x̃z̃|) P ′ implies νx̃.P ⇒π νx̃z̃.P ′

3. P ↓π u implies (| |) P ⇓f u

4. (Bisimulation) νx̃.P
·
≈π νỹ.Q if and only if (|x̃|) P

·
≈f (|ỹ|) Q.

5. (Full abstraction) νx̃.P ≈π νỹ.Q if and only if (|x̃|) P ≈f (|ỹ|)Q.

Proof. Part 1 is by induction on the derivation of ⇒π:

1. The base case is u ỹ.P | u(x̃).Q →π P | Q{ỹ/x̃}. This is directly matched in
the fresh pi calculus.
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2. For restriction, the derivation was

P →π P ′

νx.P →π νx.P ′

The induction hypothesis gives

(| |) P ⇒f (|z̃|) P ′′ ≈f (| |) P ′.

By Lemma 3.4 (new-alpha) assume x /∈ z̃. Then by Lemma 3.1 (old-intr)
and Lemma 4.3 (old-contexts) and Lemma 4.2 (old-for-new),

(| |) νx.P ⇀f (|x|) P ⇒f (|xz̃|) P ′′ ≈f (|x|) P ≈f (| |) νx.P.

3. For parallel, the derivation was

P →π P ′

P |Q →π P ′|Q

The induction hypothesis is again as in Equation 2. In the following use
Lemma 3.4 (new-alpha) to assume z̃ fn(Q) = ∅, and the context-closure of
≈f :

(| |) P |Q ⇒f (|z̃|) P ′′|Q ≈f (| |) P ′|Q.

4. For structural congruence, the derivation was

P ≡π Q →π Q′ ≡π P ′

P →π P ′

The induction hypothesis is again as in Equation 2. By Lemma 4.4,

(| |) P ≈f (| |) Q ⇒f (|z̃|)Q′′ ≈f (| |) Q′ ≈f (| |)P ′.

Hence (| |) P ⇒f≈f (| |) P ′.
5. For transitive closure, the derivation was

P ⇒π P ′ P ′ ⇒π P ′′

P ⇒π P ′′

The induction hypotheses give

(| |) P ⇒f≈f (| |) P ′ ⇒f≈f (| |)P ′′.

Hence (| |) P ⇒f≈f (| |) P ′′ as desired. This concludes the proof of Part 1.

Part 2 is by induction on the derivation of (x̃|)P ⇒f (|x̃z̃|) P ′. There are four
cases:

1. The fresh pi heating step

(|x̃|)R|νz.P ⇀f (|x̃z′|) R|P{z′/z}
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with z′ /∈ {z̃} ∪ fn(R|νx.P ); this is matched in the pi calculus by

νx̃.(R|νz.P ) ≡π νx̃.νz′.(R|P{z′/z}).

2. The fresh pi reaction step

(|x̃|)u z̃.P |u(ỹ).Q|R →f (|x̃|) P |Q{z̃/ỹ}|R

is matched in the pi calculus by

νx̃.(u z̃.P |u(ỹ).Q|R) →π νx̃.(P |Q{z̃/ỹ}|R).

3. Replicated reaction is similar.
4. Transitivity in fresh pi reduction is derived from

(|x̃|) P ⇒f (|x̃z̃1|)P ′ (|x̃z̃1|) P ′ ⇒f (|x̃z̃2|) P ′′

(|x̃|) P ⇒f (|x̃z̃1z̃2|)P ′′

By the induction hypotheses,

νx̃.P ⇒π νx̃z̃1.P
′ ⇒π νx̃z̃1z̃2.P

′′

and hence νx̃.P ⇒π νx̃z̃1z̃2P
′′ as desired. This completes the proof of Part 2.

Part 3 is by induction on the derivation of P ↓π u. The only non-trivial case
is new. In this case the pi derivation is

P ↓π u u 6= x

νx.P ↓π u

The induction hypothesis is (| |) P ⇓f u, or equivalently (| |) P ⇒f (|z̃|) P ′ ↓ u with
P ′ ↓ u and u /∈ z̃. Assuming x′ not to clash, and by Lemma 3.1 (old-intr) and
Lemma 3.4 (subst),

(| |) νx.P ⇀f (|x′|)P{x′
/x} ⇒f (|xz̃|) P ′{x′

/x}.

Since P ′ ↓ u and u 6= x then P ′{x′
/x} ↓ u. This yields (| |) νx.P ⇒f↓ uas desired.

For Part 4, in the forwards direction, construct S= {(νx̃.P, νỹ.Q) : (|x̃|) P
·
≈f

(|ỹ|)Q} and prove that it is a
·
≈π:

(1) Suppose νx̃.P →π P ′. Hence

(| |) νx̃.P ⇒f
·
≈f (| |) P ′ Part 1

(|x̃|) P ⇒f
·
≈f (| |)P ′ Lemma 3.7, (old-for-new)

(|ỹ|) Q ⇒f (|ỹz̃|) Q′ ·
≈f (| |)P ′ by construction of S

νỹ.Q ⇒π νỹz̃.Q′ Part 2

From (|ỹz̃|)Q′ ·
≈f (| |) P ′, and by construction of S, then P ′ S νỹz̃.Q′ as required.
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(2) Suppose νx̃.P ↓π u. Hence

(| |) νx̃.P ⇓f u Part 3
(|x̃|) P ⇓f u Lemma 3.7, (old-for-new)
(|ỹ|)Q ⇓f u by construction of S

This last must be deduced from (|ỹ|)Q ⇒f (|ỹz̃|) Q′ ↓ u with Q′ ↓ u and u /∈ ỹz̃.
By Part 2 also νỹ.Q ⇒π νỹz̃.Q′ ↓ u as required.

In the reverse direction of Part 4, we must construct a more complicated
relation S. That is because some structural congruences in the pi calculus, such
as !P ≡ P |!P , are matched only by

·
≈f in the fresh calculus. Hence we incorporate

·
≈f into S:

S =
{

(A,B) : A
·
≈f (νx̃).P, B

·
≈f (νỹ).Q, νx̃.P

·
≈π νỹ.Q

}
We now prove that S is a

·
≈f . Assume (A,B) ∈S with A

·
≈f (|x̃|) P and B

·
≈f

(|ỹ|) Q and νx̃.P
·
≈π νỹ.Q:

(1) Suppose A →f A′ or A ⇀f A′. Then

(|x̃|) P ⇒f (|x̃z̃|) P ′ ·
≈f A′ since A

·
≈f (|x̃|) P

νx̃.P ⇒π νx̃z̃.P ′ Part 2

νỹ.Q ⇒π Q′ ·
≈π νx̃z̃.P ′ by assumption νx̃.P

·
≈π νỹ.Q

(| |) νỹ.Q ⇒f
·
≈f (| |) Q′ Part 1

(|ỹ|) Q ⇒f B′ ·
≈f (| |) Q′ Lemma 3.7, (old-for-new)

Given A′ ·
≈f (|x̃z̃|) P ′ and B′ ·

≈f (| |) Q′ and νx̃z̃.P ′ ·
≈π Q′, then A′ S B′ as

required.
(2) Suppose A ↓ u. Then

(|x̃|) P ⇒f (|x̃z̃|) P ′ ↓ u since A
·
≈f (|x̃|) P

νx̃.P ⇒π νx̃z̃.P ′ ↓ u Part 2

νỹ.Q ⇒π Q′ ↓ u since νx̃.P
·
≈π νỹ.Q

(| |) νỹ.Q ⇒f B′ ·
≈f (| |)Q′ ↓ u Part 1

(|ỹ|) Q ⇒f↓ u Lemma 3.7, (old-for-new)

This concludes the proof of Part 4.
For Part 5 reverse direction we prove that (| |) P 6≈f (| |) Q implies P 6≈π Q.

In particular, assume there exists a C such that (|x̃|) C[P ] 6
·
≈f (|ỹ|) C[Q]. By Part 4

then νx̃.C[P ] 6
·
≈π νỹ.C[Q] as required.

For Part 5 forwards direction we prove that P 6≈π Q implies (| |)P 6≈f (| |) Q.
In particular, assume there exists a C such that C[P ] 6

·
≈π C[Q]. By the Context
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Lemma, there exists R, σ such that (νx̃.P )σ|R 6
·
≈π (νỹ.Q)σ|R. Without loss of

generality, assume that (x̃, ỹ) does not clash with the domain of σ or the free
names of R. Hence

νx̃.Pσ | R 6
·
≈π νỹ.Qσ | R.

By Part 4,
(| |) νx̃.Pσ | R 6

·
≈f (| |) νỹ.Qσ | R.

By Lemma 3.7 (old-for-new), the ‘new’ names x̃ and ỹ can be turned into ‘old’
names (|x̃|) and (|ỹ|) up to

·
≈f . Hence

(|x̃|) Pσ | R 6
·
≈f (|ỹ|) Qσ | R

as required. �

Lemma 6 (Between fresh pi, and fresh pi up to ṽ)

1. (|x̃|) P
ṽ⇒f (|x̃z̃|) P ′ implies (|x̃|) P ⇒f (|x̃z̃|) P ′

2. (|x̃|) P ⇒f (|x̃z̃|) P ′ implies for every ṽ then (|x̃|) P
ṽ⇒f

·
≈f (|x̃z̃|) P ′

3. (|x̃|) P ⇓ṽ
f u implies (x̃|) P ⇓f u

4. (|x̃|) P ⇓f u and u ∈ ṽ implies (|x̃|) P ⇓ṽ
f u

5. (Bisimulation) If (|x̃|) P
·
≈f (|ỹ|) Q then (x̃|)P

ṽ
≈f (|ỹ|) Q for all ṽ. And if

(|x̃|) P
ṽ
≈f (|ỹ|)Q for some ṽ ⊇ fn(νx̃.P |νỹ.Q), then (|x̃|)P

·
≈f (|ỹ|) Q.

6. (Full abstraction) If (|x̃|) P ≈f (|ỹ|) Q then for all contexts C and all ṽ then

(|x̃|) C[P ]
ṽ
≈f (|ỹ|) C[Q]. And if for all contexts C there exists some ṽ ⊇

fn(νx̃.C[P ]|νỹ.C[Q]) such that (|x̃|) C[P ]
ṽ
≈f (|ỹ|) C[Q], then (|x̃|) P ≈f (|ỹ|) Q.

Proof. Parts 1 and 3 are trivial, since the definitions of ṽ⇒f and ⇓ṽ
f are a subset

of those of ⇒f and ⇓f .
For Part 2, suppose (|x̃|) P ⇒f (|x̃z̃|) P ′. By Lemma 3.5 (new-alpha), and

picking z̃′ which does not clash with x̃ṽ or fn(P ),

(|x̃|) P ⇒f (|x̃z̃′|) P ′{z̃′/z̃}. (4)

The new names created in this transition do not clash with z̃, and hence it is also
a ṽ⇒f transition. Finally, by Lemma 4.1 (old-alpha), (|x̃z̃|)P ′ ·

≈f (|x̃z̃′|) P ′{z̃′/z̃}
as required.

For Part 4, suppose P ⇓f u. This means (|x̃|) P ⇒f (|x̃z̃|) P ′ ↓f u, with P ′ ↓ u
and u /∈ x̃z̃. From assumption u ∈ ṽ then also P ′ ↓ṽ u. Now derive Equation 4
and z̃′ as before. Since u /∈ z̃ then P ′{z̃′/z̃} ↓ṽ u. Given u ∈ ṽ and z̃′ ∩ ṽ = ∅
then u /∈ z̃′. Also u /∈ x̃ as above. Hence (|x̃z̃′|) P ′{z̃′/z̃} ↓ṽ

f u as required.

For Part 5 forwards direction, construct S as follows and prove it is a
ṽ
≈f

for every ṽ.
S= {((|x̃|) P, (|ỹ|) Q) : (|x̃|)P

·
≈f (|ỹ|) Q}.
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The following commutative diagram proves that transitions are matched by left
and right hand sides:

(|x̃|) P
ṽ⇒f A′

= = Part 1
(|x̃|) P ⇒f A′

·
≈f

·
≈f by construction

(|ỹ|) Q ⇒f B′

=
·
≈f Part 2

(|ỹ|) Q
ṽ⇒f B′′

And (A′, B′′) ∈S since A′ ·
≈f B′′.

As for observations, suppose (|x̃|) P ↓ṽ
f u. Hence u ∈ ṽ. By Part 3, (|x̃|)P ⇓f u.

By construction, (|ỹ|) Q ⇓f u. By Part 4 and because u ∈ ṽ, (|ỹ|) Q ⇓ṽ
f u as required.

For Part 5 reverse direction, it is a little more complicated for two reasons.
First, transitions ⇒f are only matched by ṽ⇒f up to

·
≈f (Part 2). We therefore

construct Sṽ only up to
·
≈f . Second, there may be names v /∈ ṽ which distinguish

two terms up to
·
≈f , even though the terms are indistinguishable up to

ṽ
≈f . We

therefore limit Sṽ to just those terms that have free names in ṽ, and prove it is
a

·
≈:

Sṽ= {(A,B) : A
·
≈f (|x̃|)P

ṽ
≈f (|ỹ|) Q

·
≈f B such that fn(νx̃.P |νỹ.Q) ⊆ ṽ}.

Note that when (|x̃|) P
ṽ⇒f (|x̃z̃|) P ′ then fn(νx̃z̃.P ′) ⊆ fn(νx̃.P ). This justifies

constraint on the construction of Sṽ.
The following commutative diagram proves that transitions are matched by

left and right sides of Sṽ:

A ⇒f A′

·
≈f

·
≈f by construction A

·
≈f (|x̃|)P

(|x̃|) P ⇒f A′′

=
·
≈f by Part 2

(|x̃|) P
ṽ⇒f A′′′ note: fn(A′′′) ⊆ fn(νx̃.P )

ṽ
≈f

ṽ
≈f by construction (|x̃|) P

ṽ
≈f (|ỹ|) Q

(|ỹ|)Q
ṽ⇒f B′′ note: fn(B′′) ⊆ fn(νỹ.Q)

= = by Part 1
(|ỹ|) ⇒f B′′

·
≈f

·
≈f by construction (|ỹ|) Q

·
≈f B
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B ⇒f B′

And by construction, (A′, B′) ∈Sṽ.
As for observations, suppose A ↓f u. Therefore (|x̃|)P ⇓f u. This must be

from u ∈ fn(νx̃.P ), and hence u ∈ ṽ. With this and Part 4, (|x̃|) P ⇓ṽ
f u. By

construction, (|ỹ|) Q ⇓ṽ
f u. By Part 3, (|ỹ|) Q ⇓f u. By construction, also B ⇓f u as

required.
Part 6 is a trivial consequence of Part 5. �

Proposition 7 (Between global pi, and fresh pi)

1. (|x̃|) P
ṽ⇒f (|x̃z̃|) P ′ implies P

ṽ⇒ P ′

2. P
ṽ⇒ P ′ implies for all x̃ there exists z̃ such that (|x̃|)P

ṽ⇒f
ṽ
≈f (|x̃z̃|) P ′ and

z̃ ∩ ṽ = ∅
3. (|x̃|) P ⇓ṽ

f u implies P ⇓ṽ u

4. P ⇓ṽ u implies for all x̃ such that x̃ ∩ ṽ = ∅ then (|x̃|) P ⇓ṽ
f u

5. (Bisimulation) P
ṽ
≈ Q if and only if (| |)P

ṽ
≈f (| |) Q

6. (Full abstraction) P ≈ Q if and only if (| |) P ≈f (| |)Q

Proof. Part 1 is a trivial induction on the derivation of ṽ⇒f . Part 3 follows
trivially from Part 1.

Part 2 is by induction on the derivation of wredvv. The react and replicated-
react base cases are trivial. The new base case is as follows. Assume νz.P |R ṽ→
P{z′/z}|R with z′ /∈ ṽ ∪ fn(νz.P |R). The task is to match this with a transition
from (|x̃|) νz.P |R for any x̃. In the case where z′ /∈ x̃ it is trivial:

(|x̃|) νz.P |R ṽ
⇀f (|x̃z′|) P{z′/z}|R.

In the case where z′ ∈ x̃, work as follows. Pick a z′′ such that z′′ /∈ z′x̃ṽ ∪
fn(νz.P |R). Then

(|x̃|) νz.P |R ṽ
⇀f (|x̃z′′|) P{z′′/z}|R.

We have that z′ /∈ fn(νz.P |R) and z′ ∈ x̃. Hence apply Lemma 4.4 (old-elim)
and Lemma 6.6 to remove z′ from x̃: writing x̃\z′ for the result of this removal,

(|x̃z′′|) P{z′′/z}|R
ṽ
≈f (|x̃\z′, z′′|) P{z′′/z}|R.

Now use Lemma 4.1 (old-alpha) and Lemma 6.6 to substitute {z′/z′′}:

(|x̃\z′, z′′|)P{z′′/z}|R
ṽ
≈f (|x̃|)P{z′/z}|R.

The transitivity case for Part 2 is as follows. Assume the derivation

P
ṽ⇒ P ′ P ′ ṽ→ P ′′

P
ṽ→ P ′′
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The induction hypotheses for P
ṽ⇒ P ′ gives (|x̃|)P

ṽ→f
ṽ
≈f (|x̃z̃1|) P ′, and for P ′ ṽ⇒

P ′′ it gives (|x̃z̃1|)P ′ ṽ→f
ṽ
≈f (|x̃z̃1z̃2|)P ′′, both with ṽ∩z̃1z̃2 = ∅. Then the following

diagram commutes:

(|x̃|) P
ṽ⇒f A′ ṽ⇒f C ′

ṽ
≈f

ṽ
≈f

(|x̃z̃1|)P ′ ṽ⇒f B′

ṽ
≈f

(|x̃z̃1z̃2|) P ′′

Hence (|x̃|) P
ṽ⇒f C ′ ṽ

≈f (|x̃z̃1z̃2|)P ′′ as required. This completes the proof for
Part 2.

For Part 4 assume P ⇓ṽ u, which means P
ṽ⇒ P ′ ↓v u and u ∈ ṽ. Given any

x̃ with x̃ ∩ ṽ = ∅, Part 2 gives (|x̃|) P
ṽ⇒f A′ ṽ

≈f (|x̃z̃|) P ′ with z̃ ∩ ṽ = ∅. Because
u ∈ ṽ and ṽ ∩ x̃z̃ = ∅, then (|x̃z̃|) P ′ ⇓ṽ

f u. Hence (|x̃|) P ⇓ṽ
f u as required.

For Part 5 forwards direction, we are given ṽ and construct Sṽ predicated

upon it, and prove it is a
ṽ
≈:

Sṽ= {(P,Q) : ∃x̃, ỹ : (|x̃|) P
ṽ
≈f (|ỹ|) Q and ṽ ∩ x̃ỹ = ∅}.

If the left side of Sṽ makes a transition P
ṽ⇒ P ′ then (Part 2) also (|x̃|) P

ṽ⇒f
ṽ
≈f

(|x̃z̃1|) P ′ with z̃1 ∩ ṽ = ∅. By construction, (|ỹ|) Q
ṽ⇒f (|ỹz̃2|) Q′ with z̃2 ∩ ṽ = ∅

and (|x̃z̃1|) P ′ ṽ
≈f (|ỹz̃2|) Q′. By Part 1, Q

ṽ⇒ Q′; and by construction P ′ Sṽ Q′ as
required.

If the left side makes an observation P ↓ṽ u then u ∈ ṽ. By Part 4, (|x̃|) P ⇓ṽ
f u.

By construction, (|ỹ|) Q ⇓ṽ
f u. By Part 3, Q ⇓ṽ u as required. This completes the

forwards direction of Part 5.
For Part 5 reverse direction, the construction is more awkward. That is

because a transition P
ṽ⇒ P ′ might have created a fresh name z ∈ x̃, so that

(|x̃|)P 6 ṽ⇒ (|x̃z|) P ′. Instead we construct Sṽ up to
ṽ
≈f and prove it is a

ṽ
≈f :

Sṽ= {(A,B) : ∃x̃, ỹ : A
ṽ
≈f (|x̃|) P, P

ṽ
≈ Q, (|ỹ|) Q

ṽ
≈f B and x̃ỹ ∩ ṽ = ∅}.

Suppose the left side makes a transition A
ṽ⇒f A′. The following commutative

diagram applies.

A
ṽ⇒f A′

ṽ
≈f

ṽ
≈f by construction A

ṽ
≈f (|x̃|) P

(|x̃|) P
ṽ⇒f (|x̃z̃1|) P ′ z̃1 ∩ ṽ = ∅
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Part 1

P
ṽ⇒ P ′

ṽ
≈

ṽ
≈ by construction P

ṽ
≈ Q

Q
ṽ⇒ Q′

Part 2

(|ỹ|) Q
ṽ⇒f B′′ ṽ

≈f (|ỹz̃2|) Q′ z̃2 ∩ ṽ = ∅
ṽ
≈f

ṽ
≈f by construction (|ỹ|) Q

ṽ
≈f B

B
ṽ⇒f B′

Thus, given A
ṽ⇒f A′ we have deduced B

ṽ⇒f B′ with A′ ṽ
≈f (|x̃z̃1|) P ′, P ′ ṽ

≈ Q′

and (|ỹz̃2|) Q′ ṽ
≈f B′. Hence A′ S B′ as required.

Suppose the left side makes an observation A ↓ṽ
f u. By construction, (|x̃|) P ⇓ṽ

f

u. By Part 3, P ⇓ṽ u. By construction, Q ⇓ṽ u. By Part 4, (|ỹ|)Q ⇓ṽ
f u. By

construction B ⇓ṽ
f u as required. This completes the reverse direction of Part 5.

Part 6 is a trivial consequence of Part 5. �

Proposition 8 (Protocol correctness)

1. M
ṽ⇒ M ′ implies [[M ]] ṽ⇒ [[M ′]]

2. [[M ]] ṽ⇒ P ′ implies there exists M ′ such that P ′ = [[M ′]] and M
ṽ⇒ M ′

3. M ⇓ṽ
m u implies [[M ]] ⇓ṽ u

4. [[M ]] ⇓ṽ u implies M ⇓ṽ
m u

5. (Bisimulation) M
ṽ
≈m N if and only if [[M ]]

ṽ
≈m [[N ]]

6. (Full abstraction) P ≈m Q if and only if P ≈ Q

Proof. For Part 1, consider the case of a single transition M
ṽ→m M ′. This

must be derived from the broadcast rule

M1
!µ−→m M ′

1 M2
?µ−→m M ′

2 . . . Mn
?µ−→m M ′

n

M1| . . . |M ′
n

!µ−→ M ′
1| . . . |M ′

n

where µ 6= νv for any v ∈ ṽ. There are three possibilities for µ: either νx′ or off
or acc. In the first case, the derivation was actually

νx.P
!νx′

−→m P{x′
/x} M2

?µ−→ M2 . . . Mn
?µ−→ Mn

νx.P |M2| . . . |Mn
!νx′
−→m P{x′

/x}|M2| . . . |Mn

with x′ fresh. Translating this bottom line with [[·]] gives

νx.P |[[M2]]| . . . |[[Mn]] ṽ→ P{x′
/x}|[[M2]]| . . . |[[Mn]]
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which, since x′ is fresh and not in ṽ, is an axiom of the global pi calculus.
The second case is when µ is a off message. All transitions which send M1

! off−→
M ′

1 or receive Mi
? off−→ M ′

i an off message have [[Mi]] = [[M ′
i ]]. This yields the result

trivially.
The third case is when µ is an acc message, for instance µ = acc m′.u x̃ n.

This must have been generated by M1 = n; m̃.α, m′.u(ỹ);u x̃.P
! acc m′.u x̃ n−→ P .

By well-formedness (heard offer previously made), then M must also contain

an atom M2 = m′; m̃.α;u(ỹ).Q, and this admits M2
?µ−→ Q{x̃/ỹ}. By well-

formedness (no offer made twice), then every other Mi
?µ−→ transition is either

lose-competition, lose-opportunity or discard, all giving [[Mi]] = [[M ′
i ]]. In all the

transition M
ṽ→m M ′ was

n; m̃.α;m′.u(ỹ);u x̃.P | m′; m̃′.α′;u(ỹ).Q | M3| . . . |Mn

ṽ→m P | Q{x̃/ỹ} | M ′
3| . . . |M ′

n.

Translating this transition with [[·]] gives

u x̃.P | u(ỹ).Q | [[M3]]| . . . |[[Mn]] ṽ→ P | Q{x̃/ỹ} | [[M ′
3]]| . . . |[[M ′

n]]

which, given [[Mi]] = [[M ′
i ]] for i >= 3, is an axiom of the global pi calculus.

The other two cases for acc (when M1 is an input or replicated input atom) are
similar. This concludes the proof for Part 1.

For Part 2, the transition [[M ]] ṽ→ P ′ is derived from one of the three rules
in the global pi calculus. If it was the new rule, the transition was

νx.P | R ṽ→ P{x′
/x} | R

with x′ fresh and not in ṽ. Since the translation [[·]] just translates a machine
multiset element by element, then M = νx.P | M1| . . . |Mn such that [[M1]] | . . . |
[[Mn]] = R. Because x′ is fresh and not in ṽ then also M admits the matching
transition:

νx.P
!νx′

−→m P ′{x′
/x} M1

?νx′

−→m M1 . . . Mn
?νx′

−→m Mn

νx.P |M1| . . . |Mn
!νx′
−→m P{x′

/x}|M1| . . . |Mn

If the transition [[M ]] ṽ→ P ′ was derived from the react rule, the transition
was

u x̃.P | u(ỹ).Q | R ṽ→ P | Q{x̃/ỹ} | R.

We consider the form of M such that its translation [[M ]] should have the form
indicated. It must have had M1 = u x̃.P or M1 = n; m̃.α;u x̃.P . It must have
had M2 = u(ỹ).Q or n′; m̃′.α′;u(ỹ).Q. And it must have had M3| . . . |Mn such
that [[M3]]| . . . |[[Mn]] = R. If M1 was just u x̃.P then it can make the offer
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u x̃.P
!n off u x̃−→ m n; m̃.α;u x̃.P . Note that every other Mi

?n off u x̃−→ m M ′
i satis-

fies [[Mi]] = [[M ′
i ]]. Similarly if M2 was just u(ỹ).Q then it too can make an offer.

So we assume without loss of generality that M1 and M2 are both offers. By well-
formedness (one-came-first) then either n ∈ m̃′ or n′ ∈ m̃. The two cases are
similar; we consider the first. By well-formedness (offer-previously-made) then
the machine is

n; m̃.α;u x̃.P | n′; m̃′.α′, n.u x̃;u(ỹ).Q | M2| . . . |Mn.

This admits the transition
! acc n.u(ỹ) n′

−→ m P | Q{x̃/ỹ} | M ′
1| . . . |M ′

n.

For each i >= 3 the transition Mi
!µ−→m M ′

i must have been lose-competition
or lose-opportunity or discard, so [[Mi]] = [[M ′

i ]]. Hence, translating Equation 6
with [[·]] yields Equation 6 as required.

The case where [[M ]] ṽ→ P ′ was derived from the replicated react rule is
similar. This completes the proof for Part 2.

For Part 3 it is given that M ⇓ṽ
m u, or equivalently M

ṽ⇒m M ′ ↓ṽ
m u. Hence

u ∈ ṽ and M ′ contains an atom n; m̃.α;u x̃.P or . . . ;u(x̃).P or . . . ; !u(x̃).P . By
Part 1, [[M ]] ṽ⇒ [[M ′]]. Since M ′ contains one of the three specified atom, then the
translation [[M ′]] contains one of u x̃.P or u(x̃).P or !u(x̃).P . Hence [[M ′]] ↓ṽ u
as required.

For Part 4 it is given that [[M ]] ⇓ṽ
m u, or equivalently [[M ]] ṽ⇒ P ′ ↓ṽ u. Hence

u ∈ ṽ and P ′ contains u x̃.P or u(x̃).P or !u(x̃).P . We consider the case u x̃.P ;
the others are similar. By Part 2, M

ṽ⇒m M ′ with P ′ = [[M ′]]. Since P ′ contains
u x̃.P then M ′ must have contained either u x̃.P or n; m̃.α;u x̃.P . If the latter,
then M ′ ↓ṽ

m u as required. If the former, then M ′ admits the transition

u x̃.P | M2| . . . |Mn
!n off u x̃−→ m n; ; u x̃.P | M ′

2| . . . |M ′
n.

This result then admits ↓ṽ
m u as required. This completes the proof for Part 4.

For Part 5 forwards direction, construct

Sṽ= {([[M ]], [[N ]]) : M
ṽ
≈m N}

and prove it is a
ṽ
≈. First show that the transition [[M ]] ṽ⇒ P ′ is matched by [[N ].

By Part 2, then M
ṽ⇒m M ′. By construction, N

ṽ⇒m N ′ ṽ
≈m M ′. By Part 1,

[[N ]] ṽ⇒ [[N ′]]. Hence by construction P ′ = [[M ′]] S [[N ′]] as required. Second show
that the barb [[M ]] ⇓ṽ u is matched by [[N ]]. By Part 4, M ⇓ṽ

m u. By construction,
N ⇓ṽ

m u. By Part 3, [[M ]] ⇓ṽ
m u as required.

For Part 5 reverse direction, construct

Sṽ= {(M,N) : [[M ]]
ṽ
≈ [[N ]]}
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and prove it is a
ṽ
≈m. First show that the transition M

ṽ⇒m M ′ is matched by

N . By Part 1, [[M ]] ṽ⇒ [[M ′]]. By construction, [[N ]] ṽ⇒ Q′ ṽ
≈ [[M ′]]. By Part 2,

N
ṽ⇒m N ′ with [[N ′]] = Q′. Hence by construction [[M ′]]

ṽ
≈ Q′ = [[N ′]] as required.

Second show that the barb M ⇓ṽ u is matched by N . By Part 3, [[M ]] ⇓ṽ
m u. By

construction, [[N ]] ⇓ṽ u. By Part 4, N ⇓ṽ u as required. This concludes the proof
of Part 5.

Part 6 is a trivial consequence of Part 5. �
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