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Abstract

In the presence of failure, any protocol for distributed atomic commitment will have certain unavoidable
limitations. These limitations turn out not so serious in one special case — that of synchronous rendezvous.
Rendezvous is important because it is the basis for process calculi, which themselves underpin several new
experimental languages and also web services.

We give a simplified three phase commit protocol specially tailored to rendezvous. In the presence of
arbitrary message loss and permanent site failure, the protocol is strongly non-blocking for one party — the
party can always unblock immediately. This is useful for writing a reliable non-blocking web service. If
message loss is fair and site failure is not permanent, then the protocol is also weakly non-blocking for the
other party — the chance of it remaining blocked tends to zero as time increases. (This yields a solution to
the classic “Two Generals” problem, which is a degenerate case of rendezvous).

The proof of non-blocking uses a novel technique involving Markov processes. It is a general technique
that applies to any calculus and any implementation with message loss, so long as the two are bisimilar.



1 Introduction

Process calculi with rendezvous [13, 20] have been used as the basis for experimental concurrent
programming languages [5, 10, 15, 23, 32], and are also being used for emerging standards in web
services [2, 9, 28]. Transactions have a long history in database research. When process calculi
meet with transactions [3, 7, 6, 8, 21] they provide new motivations, new problems, and new the-
oretical techniques. The new theoretical techniques are precise mathematical formalisms, with
bisimulation to prove correctness over all possible execution traces. (Transaction validity is simu-
lation; transactional non-triviality and weak termination are special cases of inverse simulation, and
bisimulation is the combination of the two simulations.) The new problem involves synchronous
rendezvous — a special case of transactions, with interesting properties.

Synchronous rendezvous is a communication primitive for multithreaded and distributed
programming. It assumes a distributed set of communication channels. One or more machines
signal their wish to send data over a channel, and they then block. Other machines signal their
wish to receive data over a channel, and also block. When a sender/receiver pair match up, they
exchange data and both then unblock. This is atomic: either both parties in the pair unblock, or
neither does and both remain available for other pairings. Synchronous rendezvous is the basic
mechanism of computation in the pi calculus [20], a canonical calculus of concurrency.

Synchronous rendezvous is a special case of distributed atomic transaction. Normally, a trans-
action requires its participants to either all abort, or all commit. One kind of transaction called
a cohesion [22] has lesser requirements: either all abort, or a subset commit while the rest abort.
Rendezvous is a ‘binary’ cohesion — it requires that exactly one sender and one receiver commit to
interact while all other participants abort. (There is also an additional requirement of rendezvous,
freedom, discussed below).

There is a standard impossibility result for atomic commitment [12, 27]: in the presence of
failure, at least some committing participants may be forced to block until they can re-establish
communication with the others. Rendezvous is still subject to this impossibility result, but it is
less serious — one party to the rendezvous (such as a web service) will never block, while the other
party (a client that connects to it) might. Through exploiting the binary nature of rendezvous, we
obtain this result with a three phase commit protocol that is shorter than the version traditionally
used. In particular, the traditional protocol has one coordinator and several participants; in ours,
the offering party is coordinator for the first phase and the accepting party is coordinator for the
next two. The traditional protocol uses an extra quorum-based recovery phase in the presence of
message loss [26]; ours does not, since (in binary rendezvous) the accepting party alone is already
quorate.

The standard “Two Generals’ problem [18] is a special case of synchronous rendezvous. The
problem has two Roman armies at the top of two different hills, with barbarians in the valley.
The generals communicate via messengers, who may be intercepted by the barbarians. If both
generals decide to attack then the barbarians will be crushed; if only one attacks then the barbar-
ians will win. In rendezvous terms, one program wishes to send on a channel and one wishes to
receive on it. Either both programs commit to interacting and so unblock, or neither one does. It
is commonly (but imprecisely) stated that the two generals problem has no solution. More pre-
cisely, it has no solution without an unbounded number of messages. The results presented here
are consistent with that more precise statement, but can be stated positively: the two generals prob-
lem has a solution which never yields a lone attack, and which yields a unified attack with a probability that
tends to 1 as time increases. In computer science such a property is called ‘divergence’; in modal
logic it is called ‘eventuality” and written o; in probability theory the result is said to be ‘almost
certain’ or ‘overwhelmingly likely’. Alas for the generals, it only helps them agree in principle,
rather than agree to a fixed time. We return to the Two Generals problem in the conclusion.

There is one additional requirement of rendezvous, ‘freedom”: If there exists a send/receive pair
where both parties are uncommitted or aborted, then rendezvous between this pair is possible. (This is
strictly stronger than conventional non-triviality). For a concrete example of freedom after an
abort, consider the proposed rendezvous between Romeo and Juliet [25]. Tragically a confirma-
tion message from Juliet is lost, and so Romeo aborts this rendezvous and chooses instead to



go with the Poison. Because of the abort, Juliet will not keep waiting in vain for Romeo, but is
instead free to choose other partners such as the Sword. A happier example of freedom is given
in Figure 4 (page 20).

In the process calculi field synchronous rendezvous has not been widely used, because it has
not been clear how to achieve it reliably in the presence of failures. Instead, most work has
focused on asynchronous rendezvous [1]. This is where the sending party does not block, and
indeed does not know whether the message was successfully delivered. Such an asynchronous
rendezvous is good as a model for a fallible network, but it makes for an obnoxious primitive in
a practical programming language — akin to not knowing whether a system call succeeded, and
not being able to check its return code!

If there were no failures, it would be easy to implement synchronous rendezvous just in terms
of asynchronous: the receiver is programmed to send back an acknowledgement, and the send-
ing party blocks until it has received this acknowledgement. (This two-phase rendezvous is a
degenerate case of the trivial two-phase solution to distributed transactions in the absence of
failure). But consider now what happens if there is communication failure — the sending party
blocks for ever, waiting in vain for the acknowledgement. The cause of this wait is either that the
acknowledgement has been lost, or that the original send has been lost. In an attempted solution
the receiver party might be programmed to keep sending an acknowledgement until at least one
gets through, but this does not help if the original ‘send” was lost. The sending party might be
programmed to keep sending its ‘send’ to all possible receivers until at least one gets through, but
this yields an error if two sends got through. In effect the sending party needs to know whether
its send got through — ie. it needs something like synchronous rendezvous!

In the asynchronous localised case [13, 14] a simpler halfway solution is possible. Localised
means that receivers are all at the same location, and might collectively be thought of as com-
prising just a single partner in the transaction. (Equivalently, receivers are never partitioned
amongst themselves, and no receiver ever fails unless they all do.) This means that the freedom
requirement of possible rendezvous between any pair becomes degenerate — there is only one
pair — and a blocking protocol such as two-phase can be used. In particular, for encoding syn-
chronous into asynchronous, the send command becomes ‘keep trying to send until I hear that it
worked’, and similarly the acknowledge becomes ‘keep trying to acknowledge until I hear that
it worked’. This is equivalent to simply using a reliable messaging transport, as is done with Mi-
crosoft Biztalk [11]. However, many real-world situations are non-localised, such as buying an
airline ticket from one of several different companies or signing onto one of two different game
servers. Therefore, even in Biztalk and asynchronous calculi, one must still implement some
synchronous protocol such as the one described here.

Our approach is indeed to implement rendezvous transactions in an asynchronous process
calculus formalism. Other, simpler transactions have been implemented this way before. No-
tably, in [3] there is an implementation of the standard two phase commit protocol in an asyn-
chronous process calculus, with proofs of ‘eventual’ correctness in the presence of failures. We
remark that two phase commit assumes a fixed set of participants, and so does not give the free-
dom required by rendezvous. That is why our current work instead uses a three phase protocol
— one which does give freedom. (Although [3] uses timers for its protocol, it could achieve the
same ‘eventual’ correctness result merely through non-determinism, as is done here.) Further
work on transactions and process calculi [7, 6, 8] has instead not dealt with failure. Some recent
work [21] gives a process calculus formalism and proof for a distributed consensus algorithm in
the presence of failures, although consensus again uses a fixed set of participants. (This algorithm
also uses ‘magical failure detectors’, based on a weaker failure model than the arbitrary message
loss we assume for the current work.)

In summary, the possibility of failure requires synchronous rendezvous: as a programming
primitive it is far preferable to the asynchronous alternative; and even in an asynchronous lan-
guage, a reliable synchronous rendezvous still has to be programmed eventually.



Romeo should have used a three-phase commit protocol

Our original contribution in this paper is to give a new three phase commit protocol for imple-
menting synchronous rendezvous. We prove it correct with respect to the pi calculus, a paradig-
matic calculus for concurrency and synchronous rendezvous. In particular, we prove that the
protocol is a faithful implementation of the calculus — the implementation admits a rendezvous
if and only if the calculus does, even in the presence of failures.

We use three models for failures, each progressively more specific, and give progressively
stronger results for each:

1. Assume communication failure, also called arbitrary message loss. We prove that if the im-
plementation can make a particular interaction, then so can the calculus. This property is
known as validity. We also prove that if the calculus can make a particular interaction, then
(if undesired failure does not happen) so can the implementation. This result combines
weak termination and freedom, which is strictly stronger than non-triviality. Together, the two
results amount to bisimulation between calculus and implementation.

2. Assume that message loss is fair: messages may fail as above, but will not perpetually
fail. We prove that the protocol is ‘overwhelmingly likely” non-blocking: the chance of
remaining blocked tends to zero as time increases. The Two Generals problem uses the
fair failure model, and so it too admits a solution that never terminates incorrectly and
is ‘overwhelmingly likely” to terminate correctly; equivalently, it admits a solution which
‘eventually’ succeeds.

3. Assume site failure: all messages to or from a site perpetually fail, presumably because a
device has crashed or been turned off. We exhibit a type system which guarantees that a
server in communication with such a device will not block.

In this paper, for simplicity, we consider a broadcast network. This simplifies the task of
discovery (ie. discovering which other parties on the network are willing to respond to our
request); it also allows a trivial implementation of distributed choice. However, the protocol
seems suitable also for a point-to-point network. We remark that a point-to-point network is
much like a fallible broadcast network in which each broadcast message fails to reach all but one
recipient. Also for simplicity we include no explicit notation of locations or for the failure of a
location. Instead, we model such a failure as the failure of all messages to or from a group of
processes.

Our proof for non-blocking uses a novel technique involving Markov processes (Section 5).
It is a general technique that adapts straightforwardly to any calculus and any implementation
with failures, so long as the two are bisimilar.

We stress that although we assume an asynchronous, broadcast, unreliable network model,
the pi calculus that we implement on top of it is synchronous, point-to-point and reliable.

2 Protocol

We now give an informal description of the protocol for synchronous rendezvous. The protocol
is drawn as a finite state machine in Figure 1, some example message-traces are given in Figure 2,
a sketch is given in Figure 4, and the protocol is presented formally in the following section.

Overview: the protocol first picks a possible pair that is interested in rendezvous together, and
then tries to make the rendezvous happen. If no possible pair was found, or if the rendezvous
didn’t work out, then the system is left in the same state it was initially — free to pick another
possible pair and start again. The initial pick is lightweight and does not attempt (or need) to
deal with failures. But once a pick has been made, then the pair make a decision about whether
to commit or abort this particular pick, and their decision is communicated reliably to each other.
What follows gives more details to this overview:
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Figure 1: The protocol for rendezvous, as a finite state machine. The initial term «.P may be an input or
output command. It may end up initiating a rendezvous (left branch) or responding to a rendezvous (right
branch). The spawn command starts another fragment running in parallel.

1. Any party with an output command can, at any time, advertises this fact and block. It
generates a globally unique ‘transaction identifier’ for each advertisement it makes. (We
assume this identifier for the following steps of the protocol). If it has an advertisement
outstanding, it can supersede it by broadcasting a different advertisement.

2. Any party with an input command who hears the advertisement can invite the advertiser
to make an offer. (For efficiency, if it heard someone else broadcast an invitation first, then
it might choose not to.) The input party blocks.

3. The output party will hear zero or more invitations. If it hears one or more, and has not yet
superseded its advertisement, then it chooses one of them, and broadcasts back an offer.

4. While it is waiting for an offer, the input party can non deterministically choose to abort. It
broadcasts an reject message, and goes on broadcasting it. Eventually the output party will
receive the message, and at this point it also knows to abort. When it receives the message,
it replies with enough. Subsequently, each time it hears another reject, it again replies with
enough. When the input party eventually hears enough, it stops sending reject.

5. On the other hand, if the input party did receive an offer and did not yet choose to abort,
then all is well: it unblocks, and broadcasts an accept message, and goes on broadcasting
it. When the output party hears this message it also unblocks. Again it replies enough, and
keeps replying to accept with enough until the accept stops coming.

6. (The exact symmetric case is also possible, for when the input command broadcasts an
advertisement, and an output command invites offers. A party with an outstanding adver-
tisement can supersede it by responding to some other advertisement.)

This is a three phase commit protocol: first (step 1) the advertiser waits for invitations; second
(steps 2,3) the inviter waits for offers; third (steps 4,5) the advertiser waits for accept or reject. We
give an approximate translation from our notation to traditional three phase commit notation, as
found in [4]. The translation is only approximate, since our protocol effectively involves parallel
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with no failures. (Top-right) An attempted two-party interaction, but aborted due to too many failures.
(Bottom) Juliet’s message is lost, so Romeo chooses the Poison instead.




transactions (one for the offer, one for the acceptance), as suggested by its use of two transaction
identifiers.
rendezvous protocol advertiser as coordinator inviter as coordinator

advertise message ~ VOTE-REQ YES

invite message YES PRE-COMMIT
offer message . ACK

accept message . COMMIT

In the traditional three phase commit protocol, the advertiser is the coordinator of the transaction.
It sends VOTE-REQ, and everyone votes YES or NO. If anyone voted NO then the coordinator
tells everyone to ABORT. If everyone voted YES then it tells everyone to PRE-COMMIT, so every-
one ACKs, and the coordinator collects ACKs from all other participants. When it has received
them all, it unblocks and sends COMMIT to them all, whereupon they also unblock.

In our version, the advertiser only coordinates the first phase of the protocol — as soon as
another party invites offers, then this inviter becomes itself the coordinator of a second transac-
tion. The earlier advertisement already counts as a ‘precocious” YES vote (albeit one that can be
later changed by withholding ACK). The inviter can therefore continue immediately with PRE-
COMMIT and the rest of the transaction. This is however only an approximation. In the tradition
protocol, if no ACK is received then the coordinator commits anyway. In our protocol, if no offer
is received then the inviter instead aborts.

Even in the presence of communication failure, our protocol works as it is. But the traditional
protocol instead uses a more complicated recovery-process: it attempts to form a quorum, so that
commitment is possible when at least a majority of participants know the intended outcome [26].
The difference between our protocol and this quorum may be understood thus: rendezvous is
between two parties only, so we asymmetrically define the accepting party to be quorate even
alone, and so the quorum-formation algorithm is not relevant.

Consider the rendezvous requirement of freedom and how it relates to the protocol. Freedom is
the property that, if there is any uncommitted send /receive pair, it should be possible for it to ren-
dezvous. (This is a stronger version of non-triviality). To achieve this, the first phase/transaction
of our protocol searches amongst all parties who might potentially be interested in rendezvous
on a particular channel. If this first phase were done with a blocking protocol such as two phase
commit, then freedom would be violated.

Although our protocol has not been published before, it is not all that different from existing
practice. Plumbers might advertise their services in a telephone directory. A homeowner invites
them to offer bids. They make their offers. The homeowner accepts one. (In many countries,
including Italy, America and England, the contract is deemed to be formed at the moment the
acceptance was put in a letter-box, even if it is subsequently lost in the post. Other legalities are
different — in the England a ‘notice to quit’ takes effect only when the letter is received; in Italy it
takes effect only when registered by a centralised government service.)

We remark upon an implementation detail for the enough messages. The globally unique trans-
action identifier n will actually incorporate the identity of one particular machine (location) such
that all interactions involving the identifier will also involve programs on that particular ma-
chine. Hence, contrariwise, if that same machine hears a message on n that none of its current
programs can handle, then the machine itself can reply enough n. Specifically, this implementa-
tion involves the message ‘lm =invite n with a’ in Figure 1: the same machine that generated n
will also be responsible for all enough m messages.

This implementation mechanism involves machines (locations). However we have avoided
locations in our current formalism for reasons of simplicity. Instead we have approximated the
mechanism, as we now explain with reference to Figure 1. We introduced a state enough m whose
only job is to generate enough messages. This state might be called a ‘zombie’ state since it is
left behind after each attempted interaction and has no other use. It is not needed in the imple-
mentation. There is additionally one unusual case, where a party invites but its invitation is lost.
Here the zombie will not be generated in the formalism, so the party has no one to tell it enough,
and so it perpetually sends abort. The formalism is resilient enough to cope with this case — but

7



actually in the implementation there will always be someone to say enough, as per the previous
paragraph.

In the failure scenario of machines crashing, if a machine crashes part way through an inter-
action, then another party might send a stream of reject or accept messages until the machine is
rebooted. We could perhaps bound the size of this stream by sending each message after twice
the delay of the previous. More specific solutions depend on precisely what kind of logging the
machine used (and hence, the state to which it restores itself after a crash).

3 Formalism

We now present the protocol formally. Assume an infinite set of channel-names x,y, ... and of
message-identifiers n,m, . . ..
Definition 1 (Syntax) Programs P, atoms A and machines M are

« s= o ur | u(@)

P = aP | \aP | vaP | PP | 0

A = advn.a.P | hinvn.o.c. P | off n.o.a. P | hadvn.o.a.P
invn.o.a.P ‘ acceptn ] rejectn | donen ] enoughn

M = P | A | MM

We identify terms up to commutativity and associativity of |, with O as identity. This identity is called
structural congruence.

The various ‘atoms’ A are simple those states used in the rendezvous protocol: see Figure 1 for
an explanation.

Definition 2 (Transitions) Messages, ranged over by p, are

1 = off n ‘ rejectn ] acceptn ] enoughn
n = adva | n=invn,«a | v

Transitions are as follows. The condition marked (x) is that either (o« = uZ, 8 = u(y), o = 0) or

(o = u(y), B = 0%, o = {T/§}). The broadcast’ rule requires that if M’ has a freshly generated name,
then it is fresh also with respect to N'.

In=ad 7 rejectn
a.P "=E% advn.a.P nfresh offn.o.a.P 2" .P|enoughn
Im=ad ? t
advn.a.P "= advm.a.P  m fresh offn.o.a.P  ""=E™  Pg | enoughn
?m=ad 7 enough
advn.a.P "=’ hadvm.c.a.P (%) acceptn —=E'" 0
m=invn,3 | . lacceptn
advn.a.P " —"" hinvm.c.a.P (%) acceptn ——  acceptn
. ? reject . ? h
hinvn.o.a.P 25" P | enoughn rejectn —&'" 0
. ! off . ! reject .
hinvn.o.a.P 22 offn.o.a.P rejectn =" rejectn
Im=invn,a . ? accept n
hadvn.c.a.P " — " invm.o.a.P m fresh donen =5 enoughn
. ! reject . 7 reject
invn.c.a.P =5" a.P | rejectn donen 5" enoughn
. ?off n ! enough n
invn.c.a.P — Po | acceptn enoughn — donen
! / ? .
ve.P % P{T' [z} o' fresh (new) M % M (failure)
! ? !
M-S M NS N , aP -5 8 o
' (broadcast’) . (replication’)
M|N - M'|N’ la.P 2 1a.P | 8

Write generically — to address all transitions 2,
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We have given the broadcast’ rule in a form familiar from the broadcast calculus of Prasad [24].
However, it should be noted that, up to structural congruence, M is simply a multiset consisting
of programs P and atoms A. Note also that all rules apart from broadcast’ and replication’ are
axioms and operate on single atoms in the multiset. We can remove these last two rules, replacing
them with global rules that operate on the entire multiset at once and have flat inference trees:

My 5 ML My MM, S M

I (broadcast)
M |...| M, 2 M |... M
uw=(In=adva) nfresh M. SN ML, S
. : 2 - (replication)

lo.P | My |...| My -2 advn.o.P | la.P | M}... M

Clearly, the original and these modified rules both yield the same transition system. Henceforth
we use the modified rules. (In both of the rules, any fresh names must be fresh with respect to
the entire term.)

Remark 3 (Broadcast and failures) A characteristic property of a broadcast semantics is that every

term is input-enabled: ie. M Sl M must be defined for every M, p, even if only to discard it as in

M 25 Separately, a characteristic of a failure semantics is that messages may be lost: ie. M R ML
Thus, failures relieve us of the need to separately define every single discard-transition.

We now define a form of observational equivalence for the machines. We adapt barbed obser-
vation, familiar from the pi calculus. The idea behind observation is to write M | w if a third
party could observe that machine M can react on u. In our setting, such an observation would
be made by hearing the advertisement !n = adv@ 2 or In = adv u(z). The following definition of
observation characterises syntactically the states from which such an offer might be broadcast.
Definition 4 (Bisimulation) The observation relation M | w is

advnuz.P | u
advn.u(z).P | w
MIN | wifM |uorN |u

Given any set equipped with a transition relation — and an observation relation |, write = for —* and
| for =|. Weak barbed bisimulation is the largest symmetric relation ~ such that, whenever M =~ R,
then (1) M | w implies N | wand (2) M — M’ implies N =~ N’

We remark on a slight simplification to the definition of observation. Really, the terms % 2. P and
'"wz.P can also broadcast advertisements to react on u, and so strictly speaking they should have
been added to observation. (Similarly with input). But since these terms are observable already
through@wz.P || wand 1w 2. P || u, there seemed little point.

4  Bisimulation (validity, non-triviality, weak termination)

This article proves three progressively stronger connections between the machines and the pi
calculus. The first property is that an interaction for the machine is possible if and only if one is
possible for the pi calculus. We actually use the global pi calculus [31] (Figure 3), since it admits
easier global reasoning — closer to broadcast transactions which are by nature global. Note that
pi calculus terms may be considered as multisets of atoms «.. P, la.P and vx. P.

The following translation relates machines M to calculus terms [M]. Note that the translation
is a ‘global’ translation, in that the meaning of one term off n.a. P depends on whether or not
another term acceptn is present in the system: if it is present, then we globally know that the
interaction n will succeed; if not, then we know that the interaction will fail. The term off n.a.. P
does not yet locally know the same fact, but it will eventually find out. (Similarly in English law,
a contract is deemed to be formed once the acceptance has been posted, even though the offerer
does not yet locally know that.)



The terms P in the global pi calculus are as for the machine (Definition 1). Terms are identified
up to commutativity and associativity of |, with 0 as identity.

a  u= wxr | u(@)
P = aP | \wP | vaP | P[P | O

The reaction relation is the smallest relation — satisfying the following axioms:

ay.Plu@.Q| R — P|Q{Y/i} | R (react)
Wi.P | wF).Q | R — P|Q{i/#}|Wi.P|R

WGP | W@.Q|R — P|Q{I/7)| w@).Q|R

Wi.P | w(@.Q| R — P|Q{#/#) |wj.P| u@).Q|R

ve.P| R — P{¥/z}|R 2 fresh (new)
Observation P | u is the smallest relation satisfying

wz.P|u wZ.P | u u(x).P | u 'w(Z).P | u
PlQlu ifPluor@|u

Weak bisimulation ~ is as in Definition 4.

Figure 3: The global pi calculus

Definition 5 (Translation) Define accept(M) to be the set of identifiers n such that acceptn € M.
Define [M] = [M]accept(nr) where
[[P ]]o =P
[M|N]o = [M]o | [N]o
[adv n.a.P], = [hinvn.o.a.P], = [hadvn.c.a.P], = [invn.c.a.P], = a.P
[acceptn], = [rejectn], = [donen], = [enoughn], = 0
[off n.o.a.P], = Po if n € o, or o P otherwise

From the multiset perspective, [-] is a translation from a machine multiset M into a pi calculus
multiset P, where each program ) € M appears in P unchanged and each atom A € M appears
in P as [A].

Theorem 6 (Correctness) Consider bisimulation over the disjoint union of machines and pi calculus

terms. Then M ~ [M].
The proof is substantial. We start with some explanation. Expanding out the theorem, it amounts
to

116 M 2L then [M] = [M']

2. If [M] —, P’ then M = M’ such that [M'] = P’
3. If M | uthen [M] | u

4. I [M] | uthen M | u

A corollary is that P ~,; Q in the pi calculus if and only if P ~ @ in the machine. This corollary is
the form of correctness commonly stated for process calculi — it means that the calculus and the
machine have the same ‘mathematical shape’ to their theories — but it is not strong enough for
the fairness technique of the following section.
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Remark 7 (Analogy) The traditional semantics of atomic commitment (validity, non-triviality and ter-
mination) are weaker forms of bisimulation. The following analogy was suggested by Laura Bocchi. The
machine is like a transaction protocol; the pi calculus is like the atomic commitment semantics; and the
presence of a sender/receiver pair is like “yes’ votes. Property 1 says that the protocol can only do what the
semantics say is possible — ie. validity (‘in the presence of ‘no’ votes then aborting is inevitable’). Property 2
says that the protocol is open to the same possibilities as the high-level semantics — hence non-triviality (in
the absence of 'no” votes then commitment is possible) and termination (‘one of commitment or aborting is
always possible’).

We draw attention to two features of the proof (below) of Theorem 6. The first is rejectability.
If [M] contains «. P then M must have contained «. P either as the program «.. P, or as translations
of an adv n, hinv n, hadv n, inv n, off n or accept n| off n. And given any of these possibilities, M can
abort the transaction they were involved in and start a new one: M = M’ such that [M'] = [M]
and M’ contains the atom adv m.qa. P instead of the above.

The second feature is its use of valid multisets, as follows. Given a machine M and an iden-
tifier n, let M ‘n be the multiset of atoms within M which include the identifier n. The machine
has valid multisets if, for every n, then M ]n is one of the following.

1. empty (ie. no states involve n)

2. advn.a.P and zero or more hadvn.o;.3;.P;, where each (6;, o, 0;) satisfies (*) from Defini-
tion 2.

one or more hadvn.o;.5;.P;

invn.o.a.P

invn.o.a.P and hinvn.oq.8.P; such that (o, 8, 0), (8, o, 02) satisfy (*)
invn.o.a.P and off n.os.5.P

acceptn and off n.o5.5.Ps

acceptn and enough n

v N o Uk W

acceptn and donen

10. donen

11. rejectn

12. rejectn and hinv n.os.5.Ps
13. rejectn and off n.os.3.P;
14. rejectn and enoughn

15. rejectn and donen

These valid multisets can rule out anomalous configurations that would never actually arise in
practice: for instance, acceptn | reject n. Clearly, a pi calculus program P without atoms is valid.
Also, validity is preserved by machine transitions. This diagram shows all possible transitions

between valid multisets:
o]

i l i?
o] 2 \tzo
v
o6
Ce7 Col3 «—eol20
e8 5’14\
G / el0 \.ISO
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Lemma 8 If M is well-formed and M 2 M then M is well-formed.

!
Proof. A case analysis of the possible transitions. We detail one interesting case. Suppose M —-

Im=invn,a

M’ was deduced from hadvn.o.a.P invm.o.a.P to give

!'m=invn,

hadvn.o.a.P | My | ... M, """ invm.c.a.P | M| | ... M,

?m=invn,a

for M; " —" M/ and with m fresh. We first consider M |n and M’ |n Given that M is well-
formed and includes hadv n, then M | ,, must be multiset 2 or 3. If it is multiset 3, then every M; LN

n
M must be a failure transition M; —, M;, and so M’ ‘n is multiset 3 or 0. If M ’n is multiset 2,

?m=invn,a

then one M; was actually adv p.3.Q and it admits either failureor = — "~ hinvm.s.5.Q. In both
cases, the resulting multiset is 2, 3 or 0.
Considering now M |m, this must be multiset 0 (since m was generated fresh). The result M’ |m
must be multiset 5 (if it started with n-multiset 2 and an interaction occurred), or 4 otherwise. O
We now proceed to the main proof.

Proof of Theorem 6 (Correctness) M ~ [M].
Proof. We make the proof in four parts:
M /!
1. If M — then [M] =, [M']
2. If [M] —, P’ then M = M’ such that [M'] = P’
3. If M | uthen [M] | u
4. If [M] | uthen M | u

For Part 1, the transition M M, M’ was deduced from the broadcast rule (below) or the
replication rule (which is similar so we omit it).

My -5 ML My S MM, S MY
M| .. | M, 5 M. M
In the case where every [M;] = [M]], the result is trivially satisfied. As for the cases which
involve some [M;] # [M]], we see which transitions they must involve from Definition 5 (trans-

lation) and Definition 2 (transitions). And with Lemma 8 (well-formedness) we can enumerate
all possible states involving these transitions:

e vx.P | M 2, P{*'/z} | M with 2’ fresh. The translation [-] on both sides gives va.P |
[M] — P{*'/x} | [M] with 2’ fresh — this is just the (new) rule of the global pi calculus.

e hinvn.c.a.P | invn.os.0.Py | M ML off n.o.c. P | Pyoo | acceptn | M with either (o« =Tz,

B =u(@),o =000 = {ZT/5}) or (a« = u(y),B = a7, 0 = {T/§},02 = (). The translation [-]
gives a.P | 8.Py | [M] — Po | P2os | [M], which is the (react) rule of the calculus.

e hinvn.o.a.P | invn.oy.5.Ps | M ML off n.o.a. P | invn.oe.0.Py | acceptn | M. Translation

of this and all the following yield the same pi calculus term for both sides, up to structural
congruence.

e hinvn.o.a.P | rejectn | M ML off n.o.a. P | rejectn | M.

!reject n

e invn.o.a.P|offnoe. 8P| M — «.P|[S.Py|enoughn | M.

! rejectn

e rejectn | off n.o.a.P | M = «.P | enoughn | M.

12



e acceptn | off n.o.a.P | M acceptm acceptn | Po | enoughn | M.

For Part 2, The pi calculus step [M] —, P’ can come about in two ways (see Figure 3). Either
(1) an element of the translated multiset was v2.P and it made a (new) step to become p{x’ Jz}
with the other elements remaining unchanged. Or (2) one element was @ z. P and another u(y).Q
(or similar replicated variants), and they became P and Q{Z/j} with the other elements un-
changed.

If it was a (new) step, then M was either va.P | M;, or it was acceptn | off n.a.o.(va.Py) | M
such that (vz.P;)0 = va.P. In the first case, a lv transition mirrors the calculus step. In the
second, a possible transition

acceptn | off n.a.o.(ve.P) | M1| e M ccept n | enoughn | (va.P)o | My

can again be followed by the !v transition.

If it was a (react) step, there are more possibilities. The two parties ©wz.P; and u(y). P> (hence-
forth generically just «.P) may each have been present in M already as programs, or as transla-
tions of atoms adyv, hinv, hady, inv, or off in the absence or presence of accept n. We will show how
each possibility can eventually either become the program «. P (which can evolve into adv n.a.. P)
or can become adv n.a. P directly, without altering the translation of the rest of the multiset; sim-
ilarly advm.3.P,. Then we show how advn.a.P and advm.3.P, can react together.

e If a.P was present in [M] as a..P or adv n.c.. P then the result is already given.

e If present as hinvm.o.a. P, then M |m is multiset 5 or 12 (page 4). Multiset 5 gives

hinvm.o.a.P | invm.o2.6.Q | N rejectm B3.Q | rejectm | a.P | enoughm | N.
And multiset 12 gives
I'rej .
rejectm | hinvm.o.a. P | N raectm rejectm | a.P | enoughm | N.

e If present as hadvm.o.«.. P, then M |m is multiset 2 or 3. Multiset 2 gives

Ip=invm,a
—

advm, 5.Q | hadvm.o.a.P | N hinvp.os.0.Q | invp.oc.a.P | N

o
TSP 3.Q | enoughp | o.P | rejectp | N.
And multiset 3 gives
hadvm.c.a.P | N =i e invp.o.c.P | M
ey p | rejectp | N.

e If present as invm.o.o. P, then M ‘m is multiset 4, 5 or 6. Multiset 4 gives

-
invm.o.c.P | N T WP | rejectm | M.
And multiset 5 gives
invm.o.a.P | hinvm.o2.8.Q | N rdeetm P | rejectm | B.Q | enoughm | N.

And multiset 6 gives

rejectm

invm.o.a.P | off m.os..Q0 ~—  «.P|rejectm | 8.Q | enoughm | N.

13
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e If present as off m.o.a.. P without a corresponding accept m then M |m is multiset 6 or 13.
Multiset 6 gives

!rejectm
—

invm.o2.0.Q | off m.o.a. P B3.Q | rejectm | a.P | enoughm | N.

And multiset 13 gives

I reject m
—

rejectm | off m.c.a.P | N rejectm | .P | enoughm | N.

e If a.P was present in [M] as off m.c.3.Q | accept m such that Qo = «..P then it must have
been multiset 7. This gives

lacceptm
—

acceptm | off m.0.5.Q | N acceptm | Qo | enoughm | N.

Finally, we have a machine which contains advn.wz.P | advm.u(y).QQ. We show how they react
to yield P | Q{%/y}, thus matching the calculus.

advn.uZ.P | advm.u(y).Q | N
i N | hadvn' {Z/3}.u(7).Q | N

Im/

= Oy { VA E P | invn! {Z /) u(3).Q | N
o otf ! { Y u 7. PQIE /) | acceptm’ | N
tacceptm’ | Q{%/7} | enoughm/ | acceptm’ | N.

For Part 3, if M | u, then the multiset M contains either advn. @ Z.P or adv n.u(Z).P. Therefore
the translated multiset [M] contains @ z.P or u(Z).P and also has an observation on w.

For Part 4, suppose [M] | u. This must be because the translated multiset contains @ Z.P or
u(Z).P. Which in turn is because the original multiset M contained the same «.P either as a.P
directly, or as the translation of atoms adv, hinv, hadyv, inv, or off. Asin Part 2, M does transitions
to transform this atom into adv n.a.. P without altering the translation of the rest of the machine.
And adv n.a. P yields the desired barb. o

5 Fairness (weakly non-blocking)

In this section we assume fair communication failures with no site failures, and we prove weak
non-blocking in the machine: if the calculus admits some transitions, then the corresponding ma-
chine will ‘eventually” perform one of the transitions. Fairness holds on a millisecond scale for
packet loss in wireless networks (Observation 11), and for packet loss due to Internet conges-
tion [30]. On a scale of minutes, it holds for web services which are soon rebooted when they
crash.

The technique introduced in this section is quite general: it applies to any calculus, and any
implementation of that calculus in a failure setting, so long as the two are bisimilar. The tech-
nique is to take the machine transition system, ‘cross” it with a failure transition system, and
use a standard lemma about the probability of eventually exiting a finite transition system. To
construct the ‘cross” properly we have to avoid certain pathological cases:

1. Assume that the machine has ‘reasonable’ time intervals between each step it takes: it does
not perform an infinite number of steps before communication failure has a chance to be
repaired, nor does it stall forever.

2. Assume that failure transitions are independent of current machine state. This disallows a
‘failure demon” who makes communication fail whenever the machine looks like making
useful progress, and restores communication otherwise.
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3. Assume that machine transitions are independent of the failure process. For instance, this
disallows the programmer from knowing that failures always happen on every even hour
of the day, and scheduling machine transitions to only take place on even hours.

Definition 9 (Machine and calculus) A distributed machine is a finite set of distributed locations £ €

L, a set of states M € M and a transition relation M LM e M § (L) * M. Write — to denote any
labelled transition, and = for —*

A calculus is a set of states P € P and a translation relation P — P’ € P x P.

A correctness-preserving translation -] : M +— P is one where (1) M — M’ implies [M] = [M’]
and also (2) [M] — P’ implies M = M’ such that [M']| = P. A finite translation is one were the set
{M : [M] = P} is finite for all P. Denote this set M‘P.

The annotation on the transition relation == indicates that this transition requires a successful

network message to be sent between the listed locations /1, .. .. We remark that correctness M ~
[M] (Theorem 6) implies that [-] is correctness-preserving as defined above; the more traditional

correctness statement M ~ N <= [M] ~ [N] does not.
Definition 10 (Failures) A fair failure model is a Markov process (Fy, t > 0) with finite state space F,
with a function okay : F + 8(L x L).
The okay function denotes that, in a failure-state F' with (¢1,¢2) € okay(F’), then the network
connection between ¢; and ¢5 is ‘up” and so a message between them will succeed.
Observation 11 (Wireless) Wireless has a fair failure model.
Proof. The standard model for failures in a wireless network is known as the Gilbert model [16].
This says that the link quality between any two parties evolves as a Markov process where in each
state the bit errors are independent. On practical grounds, Lemmon reports that the model is em-
pirically very accurate for a describing a range of wireless networks and land mobile radio [17].
In practice, the probability of an individual message being lost ranges from 0.001 to 0.15 [29].
Write Fy, ¢, for the quality between ¢; and /5, with characteristic function okay : Fy, ¢, — boolean.
Since there are finitely many locations, then the pairwise product between all locations straight-
forwardly induces a fair failure model. O
We now embed the machine’s transitions into the failure process, to make an embedded Markov
chain. The following definition states formally the three assumptions at the start of this section:
Assumption 12 (Embedded Markov chain) Let M be the initial state of the machine, in which it is
at time Ty = 0. Let M, be the state of the machine after n transitions and T,, be the time at which it makes
the nth transition. Call the pair (M,,, Fr, ) a configuration.

1. Assume (M, Fr,) is a Markov chain and that, conditional on (M,,Fr,), (F; : t > T,) is
independent of M,,.

2. Assume a collection D s of random variables and suppose that none of them is trivial —ie. for each
M € M there exist 0 < apr < by < oo such that P(a < M < Dy; < bpy) > 0. Conditional on
M, = M, let T,,;1 — T, be distributed like Dy and let it be independent of the failure process.

3. Assume a collection Jyr r of random variables. Conditional on (M, Fr, ), let M, be dis-
tributed like Ju1,, py, ,  and let it be independent of the failure process and of Ty, — T,

The key result is that if a transition is possible in the right failure state, then it is possible from
any failure state:
Proposition 13 (Possibility) Assume an embedding, as per above. Given a machine transition M —
M, suppose there is a failure state F such that P(Ja p = M') > 0. Then for all failure states G,

P(My41 = M' | Mp,=M, Fr,=G) > 0.

Proof. The idea is that the system starts in configuration (M,,, G), and is going to do a machine
transition at a given time 7}, 1. We establish that the failure state can change from G to f before
that time, and can stay at F' until after that time. By the assumption, within that time period, the
desired transition is possible.
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By Assumption 12.2 there is a time interval [a, b] such that T,, < a < band P(a < Tp,41 < b) >
0. Then

P(Mn+1:M/ | M,=M, FTn:g)
>P(a<Ty41<b, M, 1=M', Fy=fforallt € [a,b] | M,=M, Fr ,=g)

since the latter refers to a smaller event. Now factor out the conditions, using the conditional
probability theorem — that P(A,B | C) =P(A,B,C) =P(A | B,C).P(B | C):

—P(My 1 =M' | M,=M, Fr, =G, F,=F forallt € [a,b],a<T.1<b). (1)
P(a<Tps1<b | My=M, Fp, =G, F,=F forallt € [a,b]). @)
P(F,=F forallt € [a,b] | M,=M, Fr,=G) 3)

By Assumption 12.1, future failures are independent of current machine state. This allows us to
rewrite:

(3) =P(Fi=F forallt € [a,b] | Fr,=G).

Since (F}) is a Markov process (Definition 10) then (3) > 0.
By Assumption 12.2, transition times are independent of failure states. This allows us to
rewrite:

(2) =P(a<Tp41<b | M,=M).

By choice of a and b, we get (2) > 0.
By Assumption 12.2, machine transitions are independent of time intervals and the failure
process. This allows us to rewrite:

(1) = P(Mn+1:MI | Mp,=M, FTn+1:F)'

By the assumption of the proposition, (1) > 0.

Hence (1).(2).(3) > 0, as required. i
Proposition 14 (Progress) Given a fair failure model, if a transition [M] — P’ is possible in the cal-
culus, then it is overwhelmingly likely that eventually the machine will make a transition M = M’ such
that the calculus matches it [M] — [M’].

Proof. Consider the Markov chain (M,, Fr, ). Project this onto the set of states M,, € /\/l| p U
{outside}, with all {(M;, Frr,) : 3j < i.M; ¢ M‘P} being projected onto (outside, Fr,). The result
is still a Markov chain. Note that outside includes all states P’ such that [M] — P’.

By assumption there exists a series of machine transitions M — M, ... — M, — outside.
By Proposition 13, for any F, there exists a path in the Markov chain (M, F) — (M, Fy)... —
(M, F,,) — (outside, 7) with positive probability. By the Borel-Cantelli lemma, (M, F) is transient
for all F (ie. is visited only finitely often). O

Applicability

The corollary above applies immediately to a real implementation, where M|, is always finite.
But in the formalism we have introduced, it is not finite. For instance, M | o includes all subsets
of the infinite set {okay n : n is an identifier}.

Instead, quotient the set of machines up to the presence or absence of all acceptn, rejectn,
donen and enoughn such that M ‘n contains no mentions of n other than these four atoms. This
quotiented machine then satisfies the finiteness requirement, and has exactly the same behaviour
as the original.

6  Types (strongly non-blocking)

In this section we assume the possibility of site failure and of communication failure. Actually
we treat site failure merely as ‘unfair’ communication failure —i.e. all messages to and from a site
are lost, forever.
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In the protocol, so long as the inviting party has not crashed, it can always spontaneously
reject the current rendezvous. Thus, without needing to wait for a reply, it becomes free for
subsequent rendezvous. In particular,

Im=inv

. ! reject m
hadvn.o.a.P — invm.o.o.P —

a.P. 4)

From the transaction perspective this result is not surprising — the inviting party acts as a coor-
dinator who can authoritatively decide to abort. A practical application is to make a web service
always be the inviting party. This way the web service will never block in any situation. (The
client might block, in the particular situation where the client makes advertises and the service
invites offers but then crashes before accepting the offer. We feel this is reasonable, since web
services are normally restored within minutes of a crash.)

One is tempted to say that the sender should always advertise, and the receiver should always
invite. However this is not useful. Data only ever flows from sender to receiver, so a receive-only
web service could never emit data. And vice versa, if receivers always advertise and senders
always invite, then the web service could never take in requests. This explains why we designed
the protocol to allow offers from both senders and receivers.

In this section we modify the transition system to separate advertisers from inviters, through
use of polarities. A positive name ut will advertise when it executes ‘send” commands, and a
negative name v~ will advertise when it executes ‘receive’ commands. We then give a type
system: if a program is invite-typed, then during its execution it will only ever play the role of
inviter. The type system is Milner’s sorting [19], coupled with polarities.

For modifying the transition system, we remove the advertisement transitions from Defini-
tion 2:

aP "% advn.a.P n fresh (advertise)
?m=adv 3
advn.o.P ~— = hadvm.c.a.P (hear)

We replace them with the following polarity-respecting transitions:

+

a7 P " SdvnatEP n fresh (advertise+)
u” (z).P =@ v (2).P n fresh (advertise-)
ut@).P T hady {0 /3 )t (7). P (hear+)
7 7P "7 Dhadvn Y a-EP (hear-)

Definition 15 (Polarities) Partition names into two sets: the positive names u™, ... and the negative
names v—, .. .. Let undecorated names x range over both positive and negative names. Assume a set S of
sorts ranged over by T', U . . ., again partitioned into positive and negative, with a function sort : S — S*.
A sorting is an assignment of sorts to the names in a machine such that, within a name’s scope, every
occurrence of it has the same sort. Write x : T for when x has sort T. A well-sorting is one where

1. sort(Ty) = Ti ... T, holds for every receive command xo:To(x1:Th . .. xn:T),). P and every send
command To: Ty x1:11 . .. xn: T, . P.

2. Also, for each i, the polarity of x; matches that of T;.

3. In hinvn.o.a.P, off n.o.a.P, hadvn.o.a.P and invn.o.alpha.P, the substitution o only ever
substitutes a name with another of the same sort.

A machine is invite-typed if it contains no utz.P or u~(¥).P, and no advn.a.P, hinvn.o.a.P or
off n.o.a.P.

Proposition 16 (Subject reduction) All machine transitions preserve well-sortedness. Moreover, given
well-sortedness, they also preserve invite-typing.
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Proof. Consider first well-sortedness. Most transitions have the same «.P and ¢ in their left and
right, and so trivially preserve well-sortedness. The other transitions are as follows.

1. The hear— transition introduces an empty substitution, which is trivially well-sorted.

2. The hear+ transition introduces involves u™ (Z).P and © "y and introduces the substitution
o = {¥/#}. But 7 and y have the same sorts, and so ¢ preserves sorts.
?
3. The other transitions invn.0.o.P >3 Po | accept n and off n.c.a.. P MR Py | enough n.
These both apply a well-sorted substitution to a term — such substitution preserves well-
sortedness.

As for preservation of invite-typing, suppose M — M’ with M invite-typed and well-sorted.
We wish to prove the invite-type properties hold for M’. We do this by considering the possible
transitions (Definition 2, and the revised advertise and hear transitions above).

1. To prove that M’ has no @ "Z. All transitions have identical «.P on left and right, apart
from those that apply a substitution ¢ to turn @z into Wo Zo. But o is always well-sorted,
and so uo has the same polarity as u. Therefore M’ has vty if and only if M has some @ ™ 7.
The input case is similar.

2. To prove that M’ has no advn.a.P. The only transitions that yield adv on the right hand
side are the advertise transitions (which can never apply since M has no u*Z or u™ (7));

or the transition adv n.alpha.P tm=adv o

adv).

advm.a.P (which can never apply since M has no

3. To prove that M’ has no hinvn.a.P. The only transition with hinv on the right hand side
is advn.a.P =" hinvm.o.a.P. This can never apply, since M has no adv. A similar
argument shows that M’ has no off n.c.a. P, which can only have come from inv. o

We now proceed to the non-blocking result. The situation is that the system starts with two
parts, a invite-typed web server program M and a client V. We keep the two separate with a
comma M, N, which behaves like | but is non-commutative. Formally, this involves additional
broadcast rules. As usual, any names freshly generated by one part must be globally fresh.

MM N DS NN, SN
M,Ny|...|N, -2 M/, N!|...|N/,

My 2B MM, DS M NS N
My|...|M{,N 2% M]|...|M!, N

The situation starts with the web server and the client:
M,N

The two may perform several interactions =. Note that any reduction M, N — M’, N’ preserves
well-sortedness and invite-typing of each part individually.

M' N’

Suddenly, N’ fails:
M0

At this point, M’ might have been part way through the rendezvous protocol with N/, and so
it might have atoms in any of the intermediate states hadvn.o.c. P or invn.o.a. P — generically
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we just write a.P € [M]. (Since M’ is invite-typed, it never has advn.a.P or hinvn.c.a.P or
off n.o.a.. P).

The following proposition is that M’ can still react. It is phrased somewhat carefully. If M’ has
a send or receive command in it (even one that had been part way through a protocol with N’),
and if someone then adds a complimentary receive or send command into the system, then the
two can rendezvous together. Complementarity comes from (*) in Definition 2. In the proposition,
togetherness is implied by the fact that the complementary command has been used up. (The
only way for it to have been used up is through reaction with M".)

Proposition 17 (Non-blocking) Let M’ be invite-typed and o. P € [M]. If o and some (3, o satisfy (*)
from Definition 2, then M’, 3.0 = M",donen for some M", n.

Proof. Because of invite-typing, « is either u™(Z) or ©w ~Z. We consider the first case, where § is
7 T7. The second case is similar.

From the invite-typing of M’ and the translation [-] (Definition 5), then M’ contains either
ut(Z).P directly, or one of the atoms hadvn.c.u™(Z).P or invn.oc.ut(Z).P. From Equation 4
(page 17) both of these atoms reduce to u™ (). P (similar to rejectability in Section 4).

Given M’ either containing u™ (Z).P or reducing to it, we continue reaction in the presence
of 3.0. (The first transition below involves the polarised rules advertise+ on the part of 5.0, and
hear+ on the part of M’.)

ut(3).P| My, TG0
=2V TTE oty m. T/}t (7).P | My, advm.atg.0
= @ {F /7t (@).P | My, hinvn }a 5.0
O P{U/z} | acceptn | My, offn.{}at5.0

PR pri/z} | acceptn | M, enoughn
€ P/} | My, donen -

7  Conclusions

In the process calculi literature, one often reads ‘we use asynchronous rendezvous, because it
is more suited than synchronous to a distributed network.” This statement is only a half truth.
More precisely, asynchronous is well suited to modelling a distributed network at low level, but
in the presence of failures it is awful for programming it. Some kind of reliable transport layer is
always needed, either to guarantee that the message has arrived or to guarantee that it has per-
formed its synchronous rendezvous. This paper gives a reliable implementation of synchronous
rendezvous on top of an asynchronous fallible network. This can be used either as the basis for a
programming language, or for modelling the network at a slightly higher level.

We consider how the solution applies to some standard problems. Recall the Two Generals
problem from Section 1: two generals have only unreliable communication between themselves,
but they must either both decide to attack or both decide not to. Equivalently, the program
u.P | u().Q must either unblock both P and @ or it must not react. The problem is often said
to be insoluble, by the following reasoning. Consider the shortest sequence of messages which
guarantees that both generals will attack. The protocol must also work in the presence of failure,
and so it does not depend on the successful transmission of the final message. Therefore a simpler
protocol exists which never even uses that final message —a contradiction. But this reasoning only
proves that there exists no bounded protocol. The protocol in this paper is unbounded. However
from Section 5 we know that the probability of the protocol not terminating tends to zero as time
increases. In effect, there is an ‘eventual’ solution to the two generals problem.

The standard problem of atomic commitment is often said to have no solution in the presence
of arbitrary message loss as well as site failure. The result is actually more precise [27]: at least
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1. Romeo advertises to all the pretty ladies in Verona, anyone up for a date?

2. Many (including Juliet) invite him to make offer: what do you have in mind?
3. Romeo offers to Juliet, dinner! Her decision will now be final.

4. Juliet replies I accept dinner! Now Romeo also knows the conclusion.

5. Romeo replies enough already with the accepting!

Figure 4: An instance of our three phase commit protocol, as used in Verona. Juliet could have changed her
mind at any time between messages 2 and 4. Romeo cannot make two different offers at the same time. No
one dies.

some committing nodes will be forced to block until they can re-establish communication with
the other nodes. This result is a serious problem for distributed transactions, where there are
potentially many committing nodes. But in the special case of rendezvous there are only two
committing nodes — the sender and the receiver. Moreover from Section 6 we know that only the
client and never the web server will be forced to block. This is not so serious, since a web service
will normally be restored promptly in the event of failure.

The same limitation has been stated [12] in terms of a ‘window of vulnerability’ — an interval
during which the failure of one node can cause the entire protocol to wait indefinitely. In our
protocol, the wait is not caused by the failure of any one node but only by the failure of one
particular node (the server). And in this case, the ‘entire protocol’ that waits is composed just of
the client. (The vulnerable window exists solely in the client; it starts when the client receives an
acceptance and ends when it receives okay or abort).

The final standard problem is that of star-cross’d lovers who arrange secret rendezvous. As
we see from the example of Romeo and Juliet [25] (who committed suicide after a rendezvous
failure due to message loss), reliable rendezvous is literally matter of life or death. The solution
is to adopt the three phase commit protocol discussed in this paper. An instance of this ‘Verona
protocol’ is sketched in Figure 4. The full version below is due Vivika McKie-Woods; numbers
in parentheses refer to the figure. Because of literary constraints it has been rendered as a poem
rather than a tragedy. We remark that message-loss is as relevant today with SMS messages and
emails as it was in the era of Romeo and Juliet.

Romeo was lonely so he messaged *Seeking Date. 1)
Who fancies meeting later? Around eightish — don’t be late!”
Juliet was wary (she’d been warned about his kind)
‘I won’t accept unless you tell me what you have in mind.” 2)
‘I offer dinner, candles and then after we can dance.” 3)
It sounded harmless — Julie thought she’d give the boy a chance.
‘I have a car, I'll pick you up’ he said, or rather sleazed.
‘Best not’, she answered, ‘for my parents would not be best pleased.
Meet me by the fountain. We can savour the night air.” 4)
‘Victory at last! I mean, Thats great, I'll see you there!’ ®)
Our saga ended merrily for each had used their head,
They enjoyed a lovely night — and no one wound up dead!
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