
Explicit Fusions:
Theory and Implementation

Lucian Wischik
http://www.wischik.com/lu

November 2001

http://www.wischik.com/lu

Abstract

This work describes a concurrent, distributed abstract machine for the pi cal-
culus. Its primary audience are researchers in the field of concurrency. The
secondary audience are working programmers looking for a better way to write
interactive programs. This audience need only read Chapters 1 (an overview)
and 5 (the implementation). I hope that these chapters might prove appealing
to students wishing to implement the pi calculus, perhaps as a course project.

The pi calculus of Milner, Parrow and Walker [47] is a widely studied for-
malism for describing interactive and concurrent systems. Its basic mechanism
is synchronous message-passing over a channel: (1) One program signals its
readiness to transmit some data over a channel; (2) Another program signals
its readiness to receive over that channel; (3) When it has been established that
two programs are ready to communicate, they do.

I introduce a new model for synchronous rendezvous—using explicit fusions.
‘Fusion’ means that, during communication, the data is temporarily shared be-
tween the two participating programs. ‘Explicit’ means that this fusion can
persist in the program, allowing us to delay and control the effect of the com-
munication. In this sense, explicit fusions do for the pi calculus what the explicit
substitutions of Abadi, Cardelli, Curien and Lévy [1] do for the lambda calculus.

The dissertation has two halves: theory and implementation. The theory
introduces the explicit fusion calculus—a variant of the pi calculus that includes
explicit fusions. I study its bisimulation, and relate it to the fusion calculus
of Victor and Parrow [52], the chi calculus of Fu [21] and Sangiorgi’s open
bisimulation for the pi calculus [59]. Fusions, although not explicit ones, were
initially and independently discovered by Victor and Parrow and by Fu. A pi-
calculus term called an equator, introduced by Honda and Yoshida [31], behaves
like an explicit fusion up to weak bisimulation. Merro [40] has studied the
connection between equators and the fusion calculus; I study their connection
with explicit fusions. Some of the work here has already been published by
Gardner and Wischik [25].

The implementation involves a distributed abstract machine for both the
pi calculus and the explicit fusion calculus. I introduce a technique called frag-
mentation which leads to more efficient operation of the machine, and show how
fragmentation can be encoded in the explicit fusion calculus. This fragmenta-
tion is similar to the solos calculus of Laneve, Victor and Parrow [34], in that it
does not use syntactic guards. Now there have been implementations of the pi
calculus before: PICT by Pierce is the best known; Squeak [11] based on a paper
by Cardelli [9]; Facile [26]; and the Join Calculus [17] by Fournet, Lévy and oth-
ers. What distinguishes my work is that it is an distributed virtual machine for
the pi calculus which implements synchronous rendezvous without handshak-
ing. The others implementations are either not distributed (PICT, Squeak), or
use handshaking (Facile), or do not implement the pi calculus (Join). I discuss
optimisations for when various agents share the same address space. In the
limiting case when the entire program occupies just a single address space, my
implementation becomes essentially the same as PICT and Squeak.

Parts of Chapters 3 and 4 restate existing work [25], done in collaboration
with my supervisor Philippa Gardner. She has also contributed thorough proof-
reading. The machine calculus in Chapter 6 has been improved through the help
of her and Cosimo Laneve.

Contents

1 Synchronous rendezvous 5
1.1 The pi calculus . 7
1.2 Pi calculus variations . 8
1.3 Uniprocessor pi implementation 10
1.4 Channel-managers and pre-deployment 12
1.5 Fragmentation . 16
1.6 Forwarders and fusions . 17
1.7 Whether explicit locations are needed 19

2 Explicit fusions 22
2.1 Explicit fusion calculus . 22
2.2 Explicit fusion calculus, formally 23
2.3 Equivalence relation . 24
2.4 Work related to fusions . 25

3 Bisimulation for the explicit fusion calculus 29
3.1 Overview of bisimulation . 30
3.2 Labels and interfaces . 33
3.3 Ground bisimulation . 36
3.4 Fusion transitions . 37
3.5 Efficient bisimulation . 38
3.6 Structural labels . 40
3.7 Ground congruence results . 43
3.8 Barbed bisimulation . 47
3.9 Weak bisimulation . 52

4 Embedding into explicit fusions 59
4.1 Overview . 59
4.2 The fusion calculus recalled . 61
4.3 Full abstraction for fusion calculus 64
4.4 The pi calculus recalled . 67
4.5 Embedding the pi calculus . 69

5 The fusion machine 77
5.1 Operation . 78
5.2 A registry of free names . 81
5.3 Deployment . 83
5.4 Replication . 85

3

CONTENTS 4

5.5 Co-location . 88
5.6 Fairness and failure . 92

6 Theory of fusion machine 94
6.1 Overview . 95
6.2 The machine calculus . 98
6.3 Observation relation . 102
6.4 Machine bisimulation . 104
6.5 Correctness for the explicit fusion calculus 105
6.6 Correctness for the pi calculus . 108
6.7 The located machine . 110
6.8 Flattening . 113
6.9 Correctness of flattening . 115
6.10 Efficiency of flattening . 118

7 Conclusions 127
7.1 Review . 127
7.2 Assumption . 132
7.3 Using the fusion machine . 134

Chapter 1

Synchronous rendezvous

A concurrent system is a collection of programs which run at the same time and
interact with each other. Some examples are a computer’s operating system,
the Internet, and a telephone network. The last two are also distributed—
the programs run on physically separate machines. In the past few decades
of research into concurrent and distributed systems, many theoreticians have
focused on one particular form of interaction between programs: synchronous
rendezvous at a channel. It works as follows.

1. One program signals its intention to transmit some data over a particular
channel, and then waits.

2. Another program signals its readiness to receive data over that channel,
and also waits.

3. When it has been established that two programs are ready to communi-
cate, they do, and both are then free to continue.

In 1989 Milner, Parrow and Walker proposed a calculus [47] in which programs
do nothing but communicate, and the content of their communication is nothing
but channel-names. Surprisingly, this calculus is computationally as powerful as
a Turing machine. Because of its minimality and completeness, it has attracted
much theoretical interest. It is called the pi calculus.

Five years ago Victor and Parrow [51, 52] and Fu [21] presented a model of
rendezvous where, at the instant of communication, both sender and receiver
simultaneously hold the data: it is fused between sender and receiver. This
means that either program can refer interchangeably to what the sender sent,
or to what the receiver received. My thesis is that we can prolong this instant
and use it to our advantage. Such a prolonged fusion I call an explicit fusion.
I develop a theory of explicit fusions, and show how they actually confer two
advantages: they allow for a simpler account of fusions, and they make possible a
distributed implementation of the pi calculus. They may also have more general
application: they partly inspired Milner’s current work on minimal reaction
contexts [46], for instance.

Synchronous rendezvous is conspicuously different from the basic mechanism
of the Internet. In the Internet, the receiver program creates its own local chan-
nel and waits on it, the sender program does not wait for successful transmission

5

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 6

but instead continues immediately, and sometimes data gets lost in transit. Syn-
chronous rendezvous is also different from the mechanisms typically provided
within a single machine. Here one program places its data in a shared area;
another program then looks in the area and finds the data; and the area is pro-
tected against concurrent access by a bewildering array of locking commands.
In both cases, synchronous rendezvous seems easier to use. The challenge is
to implement it on top of the other mechanisms in an efficient and safe way.
I show that explicit fusions allow for an implementation of synchronous ren-
dezvous which avoids handshaking and which uses only small messages. And
I show that explicit fusions allow for a calculus in which every atomic step in
the implementation corresponds to an atomic step in the calculus. This means
that, even in the presence of failure, the calculus is still a valid model of the
implementation.

In 1985, Cardelli proposed a uniprocessor implementation of synchronous
rendezvous [9]: that is, an implementation where all the concurrent programs
exist on a single machine, and take turns to be executed by a single processor. In
1995, Pierce and Turner described an abstract machine for the pi calculus based
on the same technique [55]. This abstract machine was used to build Pict [68,
56, 54], a programming language and compiler for the pi calculus. Turner left
open the problem of a distributed abstract machine for the pi calculus. Now
one such distributed machine had already been developed in 1989 as part of
Facile [26], a language which combines synchronous rendezvous with the lambda
calculus. However, Facile’s distributed operation involves handshaking and so
is not atomic. Other researchers have not further addressed the problem of
distributed synchronous rendezvous. Instead, most invent new communication
commands for remote interaction, perhaps retaining the pi calculus but only for
local interaction on a single processor. Following this approach is the distributed
pi calculus of Hennessy and Riely [57], the receptive distributed pi of Amadio
and Boudol [4], the ambient calculus of Cardelli and Gordon [10], and Sewell’s
nomadic pi calculus [64]. The new commands usually involve asynchronous
rendezvous, where sender programs have no continuation after the rendezvous.
All these distributed calculi have the same motivation for inventing their new
remote commands: it seemed too hard to make the synchronous rendezvous both
atomic and efficient in the presence of message loss. The same motivation led
Fournet and Levy to develop the join calculus [18, 17, 16]: this uses a somewhat
different communication mechanism, but one that is easier to implement in a
distributed system. The join calculus has been implemented by Fournet, Fesson
and others [35]. Fournet, Schmitt and Levy have implemented the ambient
calculus by translating it into the join calculus [19]. Meanwhile, Sewell and
Wojciechowski have implemented the nomadic pi calculus by augmenting Pict
with some new distributed features.

In this dissertation I present the first concurrent and distributed abstract
machine for the pi calculus itself. This machine fragments programs and dis-
tributes them between physically remote computers. And, crucially, it imple-
ments synchronous rendezvous in a new way—with explicit fusions. For this
reason I call it the fusion machine. This chapter surveys the related work in
more detail, and indicates how and why the fusion machine differs from existing
implementations.

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 7

1.1 The pi calculus

We start with a brief tutorial in the pi calculus. This section is presented by ex-
ample; mathematically inclined readers may instead prefer the formal definition
given in Section 4.4 (page 67). Two books provide a more complete account:
Communicating and Mobile Systems by Milner [45], and The pi calculus by
Sangiorgi and Walker [60].

The pi calculus is a language for describing interactive, concurrent systems.
Programs in it are dynamic, able to generate new states and new sub-programs.
They are also reconfigurable, able to modify the connections between each other.
One example application is a cellular phone network: when a phone moves from
one cell to another, the connection with the previous base station must be
broken, and a new connection made to the new base station. Thus, the system
reconfigures itself. Another example is an interactive drawing program: when
the user selects an object, selection-handles are created; when the user de-selects
that object, the handles are destroyed; and the resizing handles have one set
of states and behaviours while the rotation handles have another. Thus, the
system dynamically creates new states and behaviours. We illustrate the pi
calculus through a collection of less ambitious examples.

The pi calculus describes programs which run in parallel and which interact
over channels. Consider the example term

ux.P | u(y).Q.

It contains one program ux.P ready to output the data x over the channel u,
and afterwards to continue doing P . The output command is said to guard the
continuation P . In parallel, a second program u(y).Q is ready to receive the
data y over the channel, and afterwards continue doing Q. Here the name y is
a formal argument and is local to Q. Their rendezvous is as follows:

ux.P | u(y).Q −→ P | Q{x/y}.

In the pi calculus, the things that are sent and received in communication
are channel names. Mainly in this dissertation I use u and v to name channels
when they are used in rendezvous, and x and y to name channels when they are
sent as data, but there is no difference between the channels themselves. The
notation u.P stands for a program which sends an empty message on channel u
before continuing, and ux̃ on its own stands for a program with no continuation.

When terms have essentially the same physical structure, we say they are
structurally congruent. For instance, two parallel programs may be written in
any order:

P | Q ≡ Q | P.

To declare a name x that is local in program P , we use the restriction
operator:

(x)P.

Note that input u(x).P and restriction (x)P are different operators. They both
use parentheses to indicate that x is local in P .

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 8

Names are more like heap variables than stack variables: they can be used
outside the sub-program in which they were first created, and can persist after
the sub-program ends; whereas stack variables can do neither. Laws for scope
extrusion indicate just how far a name might have escaped. In the following,
the rendezvous at u will allow x to be used inside Q (assuming that some other
x is not already mentioned in Q). For simplicity, we write scope extrusion as
an equivalence that happens before the reaction, rather than a part of reaction:

(x)ux.P | u(y).Q ≡ (x)(ux.P | u(y).Q)
−→ (x)(P | Q{x/y})

Terms may be replicated. This allows programs to express infinite be-
haviours, accomplishing the same end as recursion and while loops. Replication
is accounted for by the structural congruence: a replicated term is ‘equivalent’
to many copies of itself.

ux | !u(y).y ≡ ux | u(y).y | !u(y).y −→ x | !u(y).y

Defined in this way, replication makes for a convenient algebra. However it
is not satisfactory for an implementation, since it allows an unlimited number
of copies to be created. Instead, both Pict and the fusion machine implement
replication by creating copies on demand (Section 5.4, page 85).

Three further operators are sometimes used in the literature. In fact, even
without them, the calculus is already Turing powerful. I recall them here for
completeness, but will not use them in the rest of the dissertation. The first
operation is summation. In the example

uz |
(
u(x).P + u(y).Q

)
−→ P{z/x},

the summed program can choose which of its two possibilities to pursue: in
this case it chose the first. The other two operators are match [x=y]P and
mismatch [x6=y]P . The first blocks until x and y become equal; the second
starts unblocked, but becomes blocked when x and y become equal. Consider
the following example:

ux | uy | uz | u(w).
(
[w=x]P | [w=y]Q | [w 6=x]R

)
.

Here, depending on which of the three outputs managed to interact, three re-
sults are possible: either a substitution {x/w} allowing just P to continue, or a
substitution {y/w} allowing Q and R to continue, or a substitution {z/w} allow-
ing just R to continue. Mismatch is a puzzling operator. It sometimes creates
a now or never situation, since a mismatch [x 6=y]P might be satisfied at one
instant, but x might become permanently fused to y at the next.

1.2 Pi calculus variations

There are almost as many variations of the pi calculus as there are researchers
working on it. Some variations add new constructs. For instance, the spi cal-
culus of Abadi and Gordon [3] adds cryptography so as to support reasoning
about concurrent security protocols; and Sewell’s already-mentioned nomadic
pi calculus adds distribution to support reasoning about concurrent distributed

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 9

protocols. Other variations modify the basic mechanism of interaction. One
particular variation is relevant to my work: symmetric interaction. In a disci-
pline as fluid as concurrent systems, symmetry at least provides a fixed point.
In this section I describe the symmetric versions of the pi calculus that have so
far been proposed, and explain how my approach differs.

The pi calculus is asymmetric in the sense that it has an input prefix u(x)
that binds, and an output prefix ux that does not. Sangiorgi invented a variant
called the private pi calculus [58] (formally known as pi-I) in which both input
and output are binding. An example reaction is

u(x).P | u(y).Q −→pp (z)
(
P{z/x} | Q{z/y}

)
. Private pi calculus

With the private pi calculus, Sangiorgi addressed the question of whether non-
binding output is essential to the expressiveness of the pi calculus. He estab-
lished that no, it is not.

The pi calculus has two operators that bind—input and restriction—when
a more parsimonious calculus is possible in which only one of them binds. The
instinct for symmetry with parsimony has led Victor and Parrow to the fusion
calculus [52] and, independently, Fu to the chi calculus [21]. Both use non-
binding input. An example reaction is

(x)
(
ux.P | uy.Q | R

)
−→fu P{y/x} | Q{y/x} | R{y/x}. Fusion calculus

In this reaction the names x and y have been fused, in the sense that the
programs P , Q and R might have referred to x or to y interchangeably. Because
it happened to be x that was restricted, we substituted y for x. If instead y had
been restricted, then we would have made the reverse substitution x for y. Both
the fusion calculus and the chi calculus require that at least one of those names
be restricted. More generally, if multiple names are involved in communication,
then for each equivalence-class of fused names only a single witness may be
unrestricted. For instance,

(x)
(
uxy | uzz | R

)
6−→fu Reaction impossible, since y and z unrestricted.

(xy)
(
uxy | uzz | R

)
−→fu R{z/x}{z/y}.

The fusion calculus was also motivated by a connection with concurrent con-
straint programming [70]; and the chi calculus by the connection between syn-
chronous rendezvous and cut elimination in proof nets [22]. Fu has studied
at length the axiomatisation of the chi calculus without replication, but with
match and mismatch [24].

Note that reaction in the fusion and chi calculi is a non-local operation:
the channel u cannot allow reaction unless it can find an enclosing restriction
operator; and the scope of the fusion affects R as well as P and Q. Because
reaction in the fusion calculus is non-local, it is awkward to implement it in a
distributed system.

I propose a different treatment of fusion reaction: rather than requiring
that all fusions be restricted, we allow unrestricted fusions to persist as explicit
fusions. For instance,

ux.P | uy.Q | R −→ x y | P | Q | R. Explicit fusion calculus

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 10

Although this example happens to show an extra program R, the reaction at
channel u is local and requires neither R nor an enclosing restriction. This
makes it easy to implement. After the reaction, and since a fusion of two names
enables them to be used interchangeably, we get the desired substitution:

x y | P | Q | R ≡ x y | P{y/x} | Q{y/x} | R{y/x}.

We have seen two calculi with non-binding communication. The first, the
fusion calculus, has fusions ‘implicit’ in its reaction relation. The second, the
explicit fusion calculus, has fusions as explicit terms in the calculus. It seems
that fusions are a natural consequence of non-binding communication.

On a linguistic note, the phrase bound name is perhaps unfortunate for a
calculus with non-binding input. Bound is a verb meaning ‘to encircle or make
local’. It is also the past participle of the verb bind, meaning ‘to attach’. In the
pi calculus, so-called bound input u(x).P both binds and bounds. But in the
explicit fusion calculus, restriction (x)P bounds, while input ux.P binds. For
this reason, Fu and others prefer to use the phrases local and global names. In
this dissertation I call them bound and free, for familiarity.

The explicit fusion calculus constitutes one of the two main contributions of
this dissertation. I develop it at length in Chapters 2 to 4. The key technical
results are as follows.

• (Section 3.8) Strong barbed congruence and strong ground congruence
coincide for the explicit fusion calculus.

• (Section 3.5) I provide an efficient characterisation of congruence—that is,
a definition which does not involve an infinite quantification over contexts.

• (Section 3.4) I use a new labelled transition, the ‘ask’ fusion transition, to
define the efficient characterisation.

• (Section 3.9) Up to weak barbed bisimulation, equators are like explicit
fusions in the sense that they allow names to be interchanged.

• (Section 4.3) Strong congruence in the explicit fusion calculus provides a
sound and complete (‘fully abstract’) model for hyper-equivalence in the
fusion calculus.

• (Section 4.5) Strong congruence in the explicit fusion calculus provides a
sound model for barbed congruence in the pi calculus.

1.3 Uniprocessor pi implementation

In 1985, Cardelli proposed a uniprocessor technique to implement synchronous
rendezvous [9]. He and Pike used this technique to implement Squeak [11], a
concurrent language for controlling a graphical user interface. In 1994, Pierce
and Turner used the same technique to create a uniprocessor abstract machine
for the pi calculus [55, 68]. This section briefly describes the technique. However,
it is difficult to extend the technique to a distributed abstract machine. The
following sections point out the difficulties, and outline my solutions.

One characteristic of a uniprocessor system is its shared address space. This
means that all names have a constant and small lookup cost. It is therefore is

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 11

cheap to exchange data—even complex data—simply by exchanging names or
pointers. By contrast, in a distributed system it takes significantly more time
to exchange data between, say, www.wischik.com and one’s personal computer.

I now describe the uniprocessor abstract machine. A state of the machine
consists of a set of program fragments, a set of channels, and a queue. Each
channel is a set of pointers to program fragments: this indicates that these
fragments are currently waiting to send or receive on that channel. Each channel
is named, and can be referenced by that name. The queue contains pointers
to program fragments: this indicates that these fragments are ready to run,
not waiting to send or receive. In general the program fragments may be in
a functional language, or an imperative language, or in the pi calculus. An
example state is shown below. For clarity we draw the channels and queue as
containing actual program fragments, rather than just pointers to them.

Channels:

u:

outx.S

v:
in(y).T ;
B

Queue: u(y).P ; uz.Q; R

In this example there are three programs u(y).P , uz.Q and R in the queue, with
u(y).P at the head of the queue. There are two channels: channel u contains a
program outx.S waiting to perform output; and channel v contains a program
waiting for input, as well as some other program B.

The uniprocessor abstract machine has a single thread of execution. At each
step, this thread takes the first program at the head of the queue and acts
upon it. In the example above, it takes the program u(y).P which wishes to
perform input on channel u. Since there is already another program waiting to
output on channel u, the thread of execution allows them to react, and places
the remainders P{x/y} and S back in the queue:

Heap:

u: v:
in(y).T ;
B

Queue: uz.Q; R; P{x/y}; S

The next head of the queue uz.Q wishes to perform an output on channel
u. But there is no other program waiting to input. Therefore, the program is
placed in the channel, thereby marking it as ‘waiting’:

Heap:

u:

outz.Q;

v:
in(y).T ;
B

Queue: R; P{x/y}; S

There are other transition steps that act only upon the queue, not channels.
For instance, P |Q;R −→ R;P ;Q interprets parallel composition in the pi cal-
culus, and 0;R −→ R interprets the nil process. Also, if the program at the

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 12

head of the queue is a piece of code in a functional or imperative language, then
it can be executed in its own way.

Cardelli describes a modification to the machine so it can implement the sum-
mation operator: a program may be waiting simultaneously in several channels,
but as soon as its first ‘wait’ is liberated, all the others are aborted. Pierce and
Turner describe a variation of the machine which fulfills the fairness property
that a waiting program will not be starved of interaction. To this end they
use a queue of waiting programs for each channel, rather than an unsorted set.
One consequence of this is that the machine is deterministic, and hence not
an exact match for the (inherently non-deterministic) pi calculus. They also
considers optimisations such as the use of an environment rather than substitu-
tion: environments are faster in a uniprocessor implementation. However, in a
distributed implementation, it may prove too costly to transport environments.
Optimisation is important for Pierce and Turner because their project is an
implementation for the pure pi calculus, without fragments of other languages:
therefore synchronous rendezvous is the only mechanism left for performing ac-
tual computation, and so it happens frequently. A modification by Sewell and
Wojciechowski [71] allows a new thread of execution to be spawned, in the case
that the program at the front of the queue contains a blocking operating system
call such as ‘wait until the user presses a key’.

The key questions for a distributed implementation are: Where in the system
should the queue reside? Should there be one queue, or many? Where should
the channels reside? How can we perform a distributed substitution? In the
following sections I give my answers.

1.4 Channel-managers and pre-deployment

In distributed calculi it is common to talk about channel-managers. These are
devices that exist somewhere in the system, and that act as mediators for ren-
dezvous. One program sends a message to the channel-manager requesting to
receive data; another program sends a message to the channel-manager request-
ing to send data; and the channel-manager pairs them up and sends confirmation
messages back.

Often, programs in distributed calculi are viewed as unitary entities with
prolonged existence, called agents. A system might therefore contains both
agents and channel-managers, and have messages sent between the two. (In
distributed calculi the agents are also usually able to move themselves about.
However, although such mobile agents are widely studied theoretically, they
have so far been used rarely in practice.)

Some distributed calculi use only agents and no channel-managers: all mes-
sages are sent between agents, and each agent has a list of channels on which
it can accept messages. Other calculi combine agents with channel-managers:
for each channel there is only a single agent in the system which can receive
messages on it.

In this section I introduce a different model in which agents do not exist at
runtime. The only entities which exist are channel-managers; all programs are
fragmented between them. I explain with four examples.

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 13

L

ux

cont.{x/y}

u(y)

cont.

Ru

u(y).Q

Q{x/y}

ux.P

P

1

2

3

Figure 1: Facile interaction between a program L = ux.P on the left and R = u(y).Q
on the right, interacting through a channel-manager u in the middle. This is an
interaction diagram [7]: a vertical line represents a program waiting for messages; a
shaded box represents a program executing; diagonal lines represent messages, and are
annotated with the content of the message. At time (1), the channel-manager contains
a single output command. At time (2), it contains both input and output and so allows
the reaction (indicated by the black circle). At time (3), the channel-manager is empty
again.

L

x

cont.

cont.

u

v

w

cont.

cont.

Rw v xu
u

w.P

v.

u.v.x.Q

v.x.Q

x.Q

u. . .Pv w

v w. .P

Figure 2: Several Facile interactions in sequence for L = u.v.w.P in parallel with
R = u.v.x.Q. Each interaction involves a four-message three-party ‘handshake’: two
messages to propose the communication to the channel-manager, and two continuation
messages sent back to L and R. Note that the agents L and R, and the channel-
manager u, are entities that exist somewhere in the system, and so each has its own
vertical line.

Note that, in the agent model, one usually annotates in the calculus whether
P |Q denotes two agents, or one agent containing a program with two concurrent
threads of execution. In my model I leave P |Q un-annotated in the calculus,
and then specify at the implementation-level which fragments of P and Q are
placed at which channel-manager.

The first example is Facile [26, 38], a language and its implementation which
integrate the pi calculus with the lambda calculus. In Facile, messages are
exchanged between agents and channel-managers—see Figures 1 and 2. But
it is unappealing as a distributed implementation of the pi calculus because of
its handshaking: if one of the ‘continue’ messages were to be lost, the resulting
intermediate state would not be expressible in the calculus. The handshaking
also has a high latency : first one message must be sent, and then another
must be received, and these two tasks must be done sequentially rather than
concurrently.

The second example is from the join calculus [17]. See Figure 3. The join
calculus combines agents with channel-managers: every entity in the system is

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 14

L1

ux
vy

L2UV

ux vyu(w)&v(z).R

R{xy/wz}

Figure 3: Join interaction with programs L1 = ux, L2 = vy and channel-manager
UV = u(w)&v(z).R. Synchronisation is achieved through a join pattern at the re-
ceived, in this case u(w)&v(z), which waits until it has received from both senders.
Then the program R might go on to send asynchronous messages to other channel-
managers.

L
ux.P

Q{x/y}

u(y).Q

P

Ru
u(y).Q

1

2

3

ux.P

Figure 4: Continuation machine showing interaction between L = ux.P and R =
u(y).Q. Each message includes an entire program. At time (1), the channel-manager
u contains just the program ux.P . At time (2), it contains ux.P |u(y).Q, and allows a
reaction. At time (3) it contains nothing.

a channel-manager which is ready to accept messages. In fact, it waits to accept
combinations of messages rather than individual messages. Once it has received
such a combination, it might send further messages to further channel-managers.
The command to send messages is asynchronous (i.e. no continuation can follow
it); this means that there is no handshaking.

Like join, many calculi limit themselves to asynchronous-send, with the in-
tention of eliminating handshakes. It is possible to encode synchronous rendez-
vous with asynchronous messages; indeed, this is how Facile is implemented.
However, such an encoding suffers from the same handshaking problems as
Facile. I believe that synchronous rendezvous is such a natural way to write
programs that a handshake-free implementation would bring real benefit.

With the following example, I introduce a handshake-free implementation
of synchronous rendezvous. I call this example the continuation machine. See
Figures 4 and 5. There are no agents. A program such as u.P |v.Q is split up
into its parallel components u.P and v.Q. The first component is then deployed
in its entirety to channel u, and the second to channel v. Once a component
has reacted, it then liberates further components which themselves are deployed
to channels. Note, incidentally, that the uniprocessor implementation of the pi
calculus (discussed in the previous section) also places parallel components of a
program in different channel-managers.

The continuation machine has two advantages. First, it uses half as many
messages as Facile. Second, it manages—without limiting itself to asynchronous
rendezvous—to eliminate handshaking. This reduces latency compared to Facile
and ensures that, even if a message should be lost, the result is still expressible
in the pi calculus.

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 15

L
u v w. . .P

x.P

v w. .P

w.P

u.v.x.Q

v.x.Q

Rw v xu
u. . .Pv w u.v.x.Q

Figure 5: Several continuation interactions in sequence for L = u.v.w.P in parallel
with R = u.v.x.Q. Observe that, after reaction at u, no messages need be sent back
to L or R: execution can instead continue directly at v. L and R are not agents; they
merely indicate the starting location of the programs. Once the programs have been
deployed, there is no further use for L and R.

However, the continuation machine has a serious problem with total message
volume. Consider how it executes the program u.v.w.x.y.z . First this program
is deployed in its entirety to channel u. Next, v.w.x.y.z is deployed to v, and
so on. For a sequence of length n, there will be a total of n messages, but
the total volume of all these messages will be 1

2n
2. Consider also the example

u.v.w.P where P is some program, perhaps in an imperative language. The
continuation machine will transport this P three times around the network.
This is not acceptable on a slow network, nor if P is large.

To avoid the repeated cost of transporting P , my solution is to deploy the
fragment P to its final destination w right at the start. In the final example
I introduce a machine which deploys fragments in this way and still achieves
handshake-free operation. I call this machine the deployment machine. See
Figures 6. Again, there are no agents. A program u.v.w.P | u.v.x.Q might
be divided up into fragments u, v , w.P , u, v and x.P which are then all de-
ployed. Each fragment in the machine is marked as blocked or unblocked; in this
example, u and u are the only unblocked fragments. When two unblocked frag-
ments are at the same channel, they react together. They then send messages
to unblock their subsequent fragments.

Let us consider how our example program u.v.w.x.y.z will execute on the
fusion machine. First, each fragment is deployed to its appropriate channel.
Given that there are n commands, deployment takes n messages each of a con-
stant size. As the program executes it takes a further n messages, just as in the
continuation machine, and each of these is a constant-sized ‘continue’ message.
In summary, this program takes 2n messages with total size 2n in the deploy-
ment machine, whereas in the continuation machine it takes n messages with
total size 1

2n
2.

Fragmentation is a good implementation principle for three reasons. Unlike
Join, it allows for synchronous rendezvous. Unlike Facile, it avoids handshaking.
And unlike the continuation machine, the total volume of all of messages remains
small.

The idea of fragmentation may be unappealing to some readers, especially
those familiar with mobile agents. However, by a twist of perspective, many
existing systems can be thought of as using fragments. Consider for instance

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 16

L

cont.

cont.

cont.

u*

u* *| uw.P x.Q

x.Q

v | v

v

cont.

u*
vw.P

Rw v xu
u. . .Pv w u.v.x.Q

Figure 6: Deployment machine executing the programs L = u.v.w.P , R = u.v.x.Q.
First, the programs are divided up into fragments, and each fragment is deployed
to its desired destination. The fragments u and u are marked with an asterisk to
indicate that they are ‘top-level’ and can executed immediately; the other fragments
are blocked. (The diagram indicates the contents of each channel within two horizontal
lines). The program proceeds to execute. Each continuation message unblocks a
further fragment.

the hyper-text transfer protocol http, the mechanism by which web pages are
transmitted. One might normally say that the protocol describes two separate
programs, one running on the web-server and the other running on a client’s
machine. But we might instead view the protocol as describing a single program,
with one fragment deployed on the web-server and the other fragment deployed
on the client’s machine.

This explanation of the deployment machine leaves two key problems un-
addressed: how to effect a substitution whose scope spans several fragments,
and how to encode blocking and continuation messages. The following sections
outline how both problems can be solved with explicit fusions.

The fusion machine presented in Chapters 5 and 6 is actually a continuation
machine. It is able to execute programs in both the explicit fusion calculus and
the pi calculus, without needing to translate one into the other. However, we
will see that fragmentation can be encoded purely within the explicit fusion
calculus. When the continuation machine executes such an encoded program,
it behaves just like a deployment machine. Our encoding therefore provides a
more efficient way to execute programs in the pi calculus as well as the explicit
fusion calculus.

1.5 Fragmentation

The previous section has shown how fragmentation gives efficiency. We now
consider how to express fragmentation within a pi-like calculus.

The following example shows a simple fragmentation. The program on the
left is the original; the program on the right has been fragmented, perhaps
because P is a large piece of code which is too costly to move about repeatedly:

u.v.w.P (t)(u.v.w.t | t.P)

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 17

The un-fragmented program waits for an (empty) rendezvous on u, then v, then
w, then continues with P . We say that P is syntactically guarded by w, since
the syntax itself directly indicates that P cannot execute until after w. Now
consider the fragmented program to the right. It uses a private (local) channel
named t for ‘trigger’. The fragment t.P runs concurrently with the rest of the
program, but it is idle until the rest of the program outputs on t. Here we say
that P is semantically guarded by w: the fact that it cannot execute until after
w is a property of the behaviour of the program. Note that fragmentation is
a transformation applied to one program in the calculus, which yields another
program also in the calculus.

More generally, we need to fragment programs with non-empty communica-
tion. Consider the following example:

u(x).v(y).w(z).P (t)(u(x).v(y).w(z).txyz | t(xyz).P)

In the program on the left, the names x, y, z are received through communica-
tion. These are local names whose scope includes the continuation P . When we
fragment the program (on the right), the scope of the names no longer includes
P : we must therefore send it copies of these names. Effectively, we must trans-
port an entire environment at every fragment boundary. In a large program
with lots of fragments and large environments, this is too costly.

The only way to avoid the cost of copying names is for the same names
x, y and z to be used in both fragments, rather than having private copies
used in P . If the same names are to be used in both fragments, then the first
fragment cannot use binding (‘scope-limiting’) input. This leads to the following
fragmentation:

u(x).v(y).w(z).P (txyz)(ux.vy.wz.t | t.P)

A form of fragmenting first appeared as part of the solos calculus of Laneve
and Victor [34]. This is a version of the pi calculus in which both input and
output lack continuations; it is therefore necessarily completely fragmented.
The surprising result is that the solos calculus is computationally as powerful
as the pi calculus, even though it cannot express trigger guards directly. Laneve
and Victor demonstrated this with an encoding of the prefix operator.

In fact, fragmentation does not require that we do away with all continua-
tions, as shown in the examples above. In Chapter 6, I present an encoding of
the prefix operator that uses limited (non-nested) continuations. I prove that
this is more efficient than Laneve and Victor’s encoding.

1.6 Forwarders and fusions

We now consider how to implement fragmentation. Our motivating example is
the following program, shown both in original and fragmented form.

w(x).P.Q (xtu)(wx.t | t.P.u | u.Q).

When the program reacts, it gives rise to a substitution. The substitution affects
both P and Q:

wy | (xtu)(wx.t | t.P.u | u.Q) −→ (tu)(t | t.P{y/x}.u | u.Q{y/x}).

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 18

It will take two separate messages to notify both fragments about the substi-
tution, since they are at separate locations. But if one of these messages were
to be lost, the result would be one substituted fragment and one unsubstituted
fragment. This amounts to a reaction step that is not expressible in the cal-
culus. Therefore, the calculus should not use such a large step for reaction: it
should use smaller atomic steps. We will see how explicit fusions allow for these
smaller steps. But first we consider related work: in particular, substitutions
and forwarders.

An explicit substitution (not fusion) is a substitution written explicitly in a
term. It has duration, and with it one can delay or control the substitutive effect
of reaction. This allows for reaction to be atomic. Explicit substitutions were
first used in the lambda calculus [1]. The fusion machine also uses a version
of explicit substitutions in its implementation, although for practical reasons
explained below we find it more natural to use explicit fusions at the calculus
level. More recently, a substitutive explicit term called an active substitution
has been introduced for the pi calculus [2], as a theoretical tool for bisimulation
proofs.

Forwarders are a practical incarnation of explicit substitutions. A forwarder
is a device which, when it receives a message or program fragment, sends it
on to somewhere else. Wojciechowski [71] shows how to encode a forwarder
in Nomadic Pict, and reviews common optimisations. A recent distributed
implementation of the ambient calculus [19] uses forwarders to help avoid hand-
shakes. To see how forwarders help avoid handshakes, consider the following
example. Imagine that a mobile phone is moving from Cambridge to Bologna
and that, during the move, all messages that arrive in Cambridge get forwarded
to Bologna. Then someone across the world in Australia can send messages to
either location, interchangeably, without needing to handshake with the phone
to send directly to its current location.

We will consider how forwarders can also be used to implement small-step
reaction. Let x; y stand for a forwarder from x to y, and suppose that there
is a fragment x.P located at x. Then x.P | x; y will evolve to y.P | x; y.
We can now express reaction in small atomic steps, by supposing that it merely
gives rise to a forwarder:

(x)(wy | wx | x.P) −→ (x)(x;y | x.P).

Subsequent atomic steps with the forwarder will transform x.P into x.P{y/x}.
However, a problem arises when forwarders conflict. Consider the example

wz.uy | wx.ux −→ x;z | uy | ux −→ x;z | x;y.

The result has two forwarders leading out from x. Therefore, two messages sent
to x might fail to meet. These conflicting forwarders must be resolved in some
way, perhaps by turning them into x; z | z ; y. The end result is that the
rest of the program can refer to x or y or z, interchangeably. That is to say:
given non-binding input, and given that there are rules for conflict resolution,
reaction in the calculus gives rise to an equivalence on names—a fusion.

We use forwarders in the fusion machine, and give rules for conflict resolu-
tion (Chapter 5). However, the rules are subtle and require substantial proof.
It also turns out in the bisimulation theory (Chapter 3) that the ability to in-
terchange backwards and forwards between names, rather than just substitute
in one direction, is frequently useful.

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 19

Because conflict-resolution is awkward, and because interchangeability is
natural, we use explicit fusions in the calculus. An explicit fusion is a term
x y that allows a reversible interchange between names: x y | x.P ≡ x y | y.P .
This amounts to abstracting away the rules for conflict-resolution. The previous
example now becomes

wz.uy | wx.ux −→ x z | uy | ux −→ x z | x y.

Conflict is by nature impossible with explicit fusions: even if one fragment x.P
has been turned into z.P , and another x.Q has been turned into y.Q, the two
fragments can still be reunited by reverting back to x.

We have discussed the problem of conflicting forwarders, and how we solved
it with conflict resolution. But a second solution is possible: we could avoid all
conflict in the first place. The obvious way to do this is to mandate that every
received name is received exactly once (like bound input in the pi calculus),
and then create forwarders with the rule uy.P | u(x).Q −→ x ; y | P | Q.
Because x is bound, this same x will never be used in input elsewhere, so we
will never produce a conflicting x ; z. This technique is used by Abadi and
Fournet for their active substitutions, for the following technical reasons. Their
goal is to allow not just names but also fragments of code to replace received
names, so that for instance x; P1 | x.Q evolves to P1.Q. But therefore they
cannot resolve x;P1 | x;P2, since it is meaningless in x;P1 | P1 ;P2 to
forward from one piece of code to another.

We see that bound input guarantees that there will be no conflict. However,
bound input cannot express fragmentation. If we are to limit ourselves to a
calculus with bound input, and still want fragmentation for efficiency reasons,
then we would need to invent some sub-calculus which allows fragmentation,
and then fragment from the pi calculus into this sub-calculus. The sub-calculus
would have to use non-binding input, as explained in the previous section. It
would therefore be very similar to the explicit fusion calculus.

We therefore face a choice: either implement the explicit fusion calculus
and provide rules for conflict-resolution; or implement the pi calculus without
rules for conflict-resolution and prove that conflict never arises. But it gains
neither efficiency nor parsimony to omit the rule for conflict resolution: When
executing a pi calculus program, conflict never arises, so the rule for conflict
resolution causes no inefficiency. Even if the rule is omitted, an implementation
still needs some rule to create forwarders, but the fusion machine combines both
conflict-resolution and forwarder-creation in a single simple rule.

On the other hand, we gain flexibility and symmetry by including the rule
for conflict resolution. We are able to implement the full language we use for
fragmentation, rather than just a subset of it. And we can implement the fusion
calculus and the solos calculus.

Because conflict-resolution brings benefit at no cost, it should be retained:
effectively, it makes sense to implement the explicit fusion calculus.

1.7 Whether explicit locations are needed

It is commonly felt that a calculus for distribution ought to have some way
to mark co-location of programs—a notion absent from the pi calculus. In
a distributed system, messages between co-located programs are fast, while

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 20

messages between remote (not co-located) programs are slow and might get
lost. And often, when one program fails, it is because of a crash that affects
all other co-located programs. If we mark co-location in our programs, then we
can reason about their failure-safety and efficiency.

The typical approach is to add a class of entities called locations to the
calculus, with each location containing a number of programs. New rules of
interaction are added which operate upon locations. This approach is used, for
instance, by the distributed pi calculus [57], the pi-l calculus [5], the nomadic
pi calculus [64] and the ambient calculus [10].

I propose a different approach. I do not add any new entities to the calculus.
Instead, I consider an equivalence-relation on channel names, with the intended
meaning that related names indicate co-located channels. This equivalence rela-
tion then modifies the operational semantics of the calculus: messages between
co-located channels are efficient, and messages between remote channels may
be lost. (In fact, in this dissertation, I consider only efficiency. Locations in
distributed calculi have been widely to address failure, but I am not aware of
any previous work on efficiency.) My approach might be described as adding
just co-location, without actually adding location.

The technical advantage of co-location is that it keeps the calculus simple.
We can even ignore co-location entirely when reasoning about correctness. We
can also use more detailed metrics for the distance between channels, perhaps
to indicate signal strength in a wireless network, without needing to alter the
calculus itself.

Co-location in this sense has not been used before. The closest similarity is
with current work by Milner [46], in which he characterises programs by two
graphs: one for its possible communications, and one for its co-location. He
explains that it is easier to prove properties about communication, because he
can ignore the additional complexity of co-location.

The question of whether to add location or co-location is open to debate. It
partly depends on what we are trying to model. When modelling the Internet,
one might say that locations correspond to Internet Protocol (IP) numbers. The
Internet fabric is able to map an IP number to a particular machine (although
various new technologies alter this mapping), and it is able to deliver messages
to IP numbers. We might add location-based commands to our calculus to
model these IP messages, and retain the pi calculus only for communication
within a machine.

On the other hand, when programming applications that use the Internet,
it is usual to address messages not only by a machine’s IP number but also
by a port number within that machine. Exactly the same commands are used
to send a message to a program on the same machine but different port, as to
send to a program on a different machine. (The message will be delivered more
quickly and reliably in the first case.) We might therefore take each channel
name to represent a combination of IP number and port number—basically a
socket [66]. Because the commands in our language only use channel names, we
can make do with adding co-location rather than location.

Conclusions. The preceding four sections have described the key features of
the fusion machine:

• at runtime, the only things that exist are channels;

CHAPTER 1. SYNCHRONOUS RENDEZVOUS 21

• programs are fragmented between channels;

• forwarders are used to simulate explicit fusions;

• and rather than location, the machine uses co-location.

The fusion machine itself is described in Chapters 5 and 6. It builds heavily
upon the explicit fusion calculus, which is described in Chapters 2 to 4.

Chapter 2

Explicit fusions

An explicit fusion is a term in a calculus which allows two names to be used
interchangeably. In this chapter, I present the explicit fusion calculus—a variant
of the pi calculus with explicit fusions. The first section describes it by example,
the second and third sections define it, and the fourth briefly outlines some key
connections with related work.

In the pi calculus, the word process has come to mean simply a term in the
calculus; and when two processes are placed in parallel, they share names and
the result is still called a process. This word is unfortunate for programmers.
An operating system process is something with its own protected address space,
so that two processes in parallel do not share names. Each operating system
process may contain one or more threads of execution. To avoid confusion, I
refer to them as terms or programs in the pi calculus, rather than processes.

2.1 Explicit fusion calculus

This section describes the explicit fusion calculus. I assume that the reader is
familiar with the pi calculus. In the pi calculus, reaction between input and
output happens in a single step:

ux.P | u(y).Q −→ P | Q{x/y}

But we will use explicit fusions to analyse the reaction in smaller steps. At the
instant of interaction, let us say that the name y and the local name x become
fused:

ux.P | u(y).Q −→ (y)(x y | P | Q) (1)

This means that P and Q can refer to x or y, interchangeably. Since the two
names are interchangeable, we can substitute x for y throughout Q. Finally,
since the local name y is merely an alias for x, and since it is not being used,
we can dispense with it:

(y)(x y | P | Q) ≡ (y)(x y | P | Q{x/y}) ≡ P | Q{x/y}

I have chosen to express the substitutive effect of explicit fusions through the
structural congruence ≡ rather than reaction −→. There are two reasons for

22

CHAPTER 2. EXPLICIT FUSIONS 23

this. First, it means that a single reaction in the explicit fusion calculus cor-
responds to a single reaction in the pi calculus. Second, it takes extra work to
implement fusions in a directed way, and reaction is directed: it is more conve-
nient to postpone that extra work for now, by sticking to (undirected) structural
congruence. We will study a directed implementation of fusions in Chapter 5,
as part of the fusion machine.

The explicit fusion calculus uses non-binding input. When non-binding input
reacts with non-binding output, the result is an explicit fusion:

ux.P | uy.Q −→ x y | P | Q

This reaction is a local one between the output and input commands. But the
effect of the resulting fusion is global in scope: x and y can be used interchange-
ably throughout the entire term, even in other parallel terms. To limit the scope
of the fusion we use restriction. Here we rewrite (1) to use non-binding input:

ux.P | (y)(uy.Q) ≡ (y)(ux.P | uy.Q) −→ (y)(x y | P | Q)

2.2 Explicit fusion calculus, formally

We now define the explicit fusion calculus. Let there be a set N of names ranged
over by u, v, We write ũ for a possibly-empty finite sequence u1, . . . , un of
names. Let there also be a set of co-names N = {u : u ∈ N}. Let µ range over
N ∪N , and write µ to interchange µ between name and co-name.

Definition 1 (Explicit fusion calculus) The set Pφ of explicit fusion terms
is given by

P ::= 0
∣∣ P |P

∣∣ !P
∣∣ (x)P

∣∣ ux̃.P
∣∣ ux̃.P

∣∣ x y

We define bound and free names in the standard way: the restriction operator
(x)P binds x in P . The name x is free if it occurs in the subject µ of an action
µx̃.P , either as name or co-name, or the object x̃ of that action. It is also free
in the fusions x y and y x. We write fn(P) to denote the set of free names in P .
We use the abbreviations (x̃)P = (x1) . . . (xn)P and x̃ ỹ = x1 y1 | . . . | xn yn.
We sometimes write φ for a fusion x̃ ỹ when it is not important which names
are being fused.

In the symbol Pφ, the subscript φ stands for ‘explicit fusion’ terms. Later
we will define Pπ for pi calculus terms.

Definition 2 (Contexts) The set Eφ of explicit fusion contexts is given by

E ::=
∣∣ µx̃.E

∣∣ !E
∣∣ (x)E

∣∣ P |E
∣∣ E|P

Definition 3 (Structural congruence) The structural congruence ≡ be-
tween terms is the smallest equivalence relation satisfying the following axioms,
and closed with respect to the contexts | , ! , () and µx̃. :

1. Abelian monoid laws with 0 as identity
P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

2. scope laws
(xy)P ≡ (yx)P (x)(P | Q) ≡ (x)P | Q if x 6∈ fn(Q)

CHAPTER 2. EXPLICIT FUSIONS 24

3. replication
!P ≡ P | !P

4. equivalence laws of fusion
x x ≡ 0 x y ≡ y x x y | y z ≡ x z | y z (x)(x y) ≡ 0

5. interchange law of fusion
x y | P ≡ x y | P{y/x}

The first three lines are standard from the pi calculus. The fourth line gives the
equivalence properties of explicit fusions: they generate equivalence relations on
names, parallel composition is the equivalence-closed union of two such relations,
and restriction removes a name from a relation. We define this equivalence
relation in the following section. Together, the final two lines allow us to derive
alpha renaming. For example:

(x)(x.0) ≡ (xy)(x y | x.0) create fresh bound name y as an alias for x
≡ (xy)(x y | y.0) interchange x for y
≡ (y)(y.0) remove the now-unused bound name x

Strictly speaking, rule 5 involves a capture-avoiding substitution, which implic-
itly requires alpha renaming. This means that, although alpha renaming is not
needed as a rule in the structural congruence, it is still used as a sub-definition.
To completely remove the need for a capture-avoiding substitution, we could
replace rule 5 with a substitution rule that only affects the subject and object
of an action, and add x y | µx̃.P ≡ x y | µx̃.(x y | P). Gardner and I develop
this idea in [25].

Definition 4 (Reaction) The reaction relation −→ is the smallest relation
satisfying the following rule, and closed with respect to structural congruence
and to the contexts | and () .

ux̃.P | uỹ.Q −→ x̃ ỹ | P | Q.

Note that prefix is a non-reactive context. That is, in the term µ.P , the term
P cannot react until after the µ. In this respect, prefixing is like the sequencing
operator (semicolon) in imperative programming languages. Prefixes are also
known as guards.

2.3 Equivalence relation

Through the structural congruence, the explicit fusions in a term generate an
equivalence relation on names. We define it here because it plays such a perva-
sive part in the explicit fusion calculus. More generally, any concurrent calculus
that has explicit fusions, parallel composition and restriction generates an equiv-
alence relation:

• Explicit fusions provide a finite basis for an equivalence relation on names.

• Parallel composition of two terms in the calculus generates the transitive
closure of the terms’ equivalence relations.

CHAPTER 2. EXPLICIT FUSIONS 25

• Restricting a name in a term in the calculus generates the term’s equiva-
lence class with that name removed.

Strictly speaking, these three points merely indicate how an equivalence relation
can be generated from the syntactical structure of some term in a calculus.
For each calculus, it is necessary to prove that this equivalence relation is the
‘correct’ one. This section gives that proof for the explicit fusion calculus. That
is to say: through the operations of structural congruence, the explicit fusions
in a term give rise to an equivalence relation, and we prove that this relation is
equal to the relation we defined structurally.

Definition 5 (Equivalence relation) An equivalence relation is a binary re-
lation that is closed with respect to transitivity, symmetry and reflexivity. Let
E,F be equivalence relations on a set N , and x, y, z ∈ N . Define

E ⊕ F = {(x, y) : ∃z̃ : (x, z1), . . . (zn, y) ∈ (E ∪ F)} equivalence-closed union
E\z = {(x, y) : (x, y) ∈ E ∧ z 6∈ {x, y}} ∪ {(z, z)} removal of an element

The identity relation I is an equivalence relation.
We now prove that the specified equivalence relation is indeed generated by

the structural congruence.

Definition 6 A term P in the explicit fusion calculus generates an equivalence
relation Eq(P) on names as follows.

Eq(x y) = {(x, y), (y, x)} ∪ I smallest equivalence relating x to y
Eq(P |Q) = Eq(P)⊕ Eq(Q) equivalence-closed union
Eq((x)P) = Eq(P)\x removal of an element

Eq(!P) = Eq(P)
Eq(µx̃.P) = I

Eq(0) = I

We write P ` x y as shorthand for (x, y) ∈ Eq(P).

Lemma 7 P ≡ Q implies Eq(P) = Eq(Q)

Proof. By rule induction on the derivation for P ≡ Q (Definition 3). For the
rule for fusion interchange, we use the result that Eq(()P{y/x}) =

(
Eq(()P) ⊕

Eq(()y x)
)
\x, proved by induction on the structure of P . 2

Corollary 8 P ` x y if and only if P ≡ x y | P

2.4 Work related to fusions

This section outlines some key connections between the explicit fusion calculus
and related work. All connections are dealt with more formally in subsequent
chapters.

Consider the following example of a pi calculus program ux.P | u(y).Q,
translated into the explicit fusion calculus and executing according to the laws

CHAPTER 2. EXPLICIT FUSIONS 26

of the explicit fusion calculus:

ux.P | (y)(uy.Q) ≡ (y)(ux.P | uy.Q) scope extrusion
−→ (y)(x y | P | Q) reaction
≡ (y)(x y | P | Q{y/x}) fusion interchange
≡ P | Q{y/x} remove now-unused name y

Note that whenever the left hand side of a reaction is a translated pi calculus
term, then all explicit fusions can be dismissed from the result, also yielding a
pi calculus term. We say that piability is preserved. In Section 4.5 (page 69) we
define piability, and prove that a pi term can react if and only if its translation
can also react. We also prove that the translation is sound with respect to
bisimulation congruence.

More generally, we can get rid of all explicit fusions in the result if and only if
the left hand side has no explicit fusions and satisfies a particular side condition.
The side condition is that at least one of the names x and y is restricted. For
instance:

(x)(ux | uy | P) −→ (x)(x y | P) ≡ P{y/x} Can remove fusion
ux | uy | P −→ x y | P Cannot remove fusion

The fusion calculus [70] and the chi calculus [21] have this side condition for their
reaction, that one of the names is restricted. They need it because they have
non-binding input but lack explicit fusions, and so cannot allow any explicit
fusions to remain in the result. It is hard to generalise the condition to polyadic
reaction without mentioning explicit fusions. We will recall how it is done in the
fusion calculus (Definition 46, page 62). We will also prove that a term can react
in the fusion calculus if and only if it satisfies the side condition and can react
in the explicit fusion calculus. And we prove that the explicit fusion calculus is
a fully abstract model, with respect to bisimulation congruence, for the fusion
calculus. Explicit fusions provide a simpler account of the fusion calculus.

Let us compare the pi calculus and the fusion calculus. Both essentially
require that, after reaction, all explicit fusions can be dismissed. The pi calculus
achieves this end with a constraint on admissible terms (it only allows bound
input). The fusion calculus instead achieves it with a constraint on admissible
reactions.

There is a surprising result about the fusion calculus due to Laneve and
Victor [34]: a term with guards can be translated into one without, while pre-
serving (weak barbed) bisimulation. The fusion calculus without guards is called
the solos calculus. Fu [22] has also independently studied solos in the context
of proof nets. The translation from the fusion calculus into the solos calcu-
lus requires non-binding input. It uses non-binding input in its catalyst agents
Uy = (z)yzz, which listen on a channel y and then fuse the two names that
come. For example, the guarded term u.v | u would be translated into

(xy)
(
Uy | uy | uz | zvx | x

)
. Solos calculus

The reaction of this term is as follows. First the two channels on u can react
immediately. This fuses z to the catalyst at y. The catalyst then reacts on z to
fuse x with v, yielding the desired result. Note that this encoding uses an extra

CHAPTER 2. EXPLICIT FUSIONS 27

reaction step and carries extra data over the channel u: it is therefore not a con-
gruence, and only works up to weak bisimulation. Less obviously, this encoding
cannot be distributed in the fusion machine without costing extra inter-location
messages. In Section 6.8 (page 113), I exhibit a different encoding which allows
fusion guards u.(x y) but no other guards. I prove that my encoding is a con-
gruence, and works up to strong bisimulation, and can be distributed without
costing extra messages. Note that the example above is a simplification of the
catalyst encoding: the full version is given in Section 6.10 (page 118).

An equator is a program that implements a fusion but is written in the pi
calculus, using the standard output and input commands of the pi calculus.
Equators were introduced by Honda and Yoshida [31], as part of a project
to characterise the equivalence of two programs based solely on the internal
reactions they can perform. Equators are defined as follows:

E(u, v) def= !u(x).vx | !v(x).ux. Equator

Essentially, one part of the equator forwards messages from u to v, and the
other part ‘backwards’ messages. An equator thereby allows the two channel
names to be used interchangeably. However, equators are more awkward than
explicit fusions. While explicit fusions generate an equivalence relation which we
have completely characterised, equators generate their equivalence relation only
through weak bisimulation, and so a complete characterisation is not possible.

Equators are also awkward with respect to program equivalence. Suppose
that two programs are equivalent, and we observe that one can accept a message
over a channel. We normally expect that the other program should also be able
to accept a message over that channel. But an equator is ‘always on’, always
able to receive a message. We no longer gain information (discriminating power)
through observing that a program can receive on that channel. It is an open
question whether this loss of discrimination has material effect: so far, in a
result due to Merro [40, 42], equators have only been shown able to encode the
fusion calculus when we surrender that discrimination by disallowing output
guards. The other significant work on equators, also by Merro [41], concerns
their use with respect to program equivalence: they can be used to give a co-
inductive characterisation of weak barbed congruence, again in the case where
output guards are disallowed. In contrast, in the explicit fusion calculus, explicit
fusions allow for an unrelated co-inductive characterisation of strong barbed
congruence (Section 3.7); however, combining them with equators makes the
problem of weak barbed congruence more difficult (Section 3.9).

Honda has proposed a general framework [30] to underly a range of calculi
which use names. A basic part of this framework, partly inspired by his earlier
work on equators, is a wire. Unlike equators, and like explicit fusions, the wire
has immediate effect through structural congruence rather than reaction. Unlike
both, the wire is such a fundamental part of the framework that even substi-
tution is defined merely as the presence of a wire—rather than a consequence
of it. Also, in order that the set of free names of a term should not be altered
by structural congruence, the framework uses degenerate wires: these are like
identity fusions x x but cannot be dismissed. Honda’s work is intended as a
general algebraic and graphical framework encompassing many calculi. Perhaps
the explicit fusion calculus might fit conveniently into this framework, and the
bisimulation theory of the following chapter might provide a case-study for the
as-yet undeveloped theory of bisimulation in Honda’s framework.

CHAPTER 2. EXPLICIT FUSIONS 28

Explicit fusions have influenced recent work on minimal reaction contexts.
For two programs to be equivalent we require that, if the first is able to exe-
cute in some context, the other one is also able. In fact, we require the same
behaviour in all contexts. The task of checking all contexts is an arduous one.
However, if we could find some class of minimal contexts, then perhaps we need
not consider all contexts. Leifer, Luca, Milner and Sewell have attempted to
systematically find the minimal contexts [37, 63]. As an example, consider the
pi calculus term x.P | y.Q. Current work by Milner [46] uses the fusion x y as
a minimal context for this term. This is something on an anomaly—although
the fusion is a context to allow reaction, it is not a valid context for pi calculus
terms. In fact, Milner’s work is set within a general categorical and graphical
framework encompassing many calculi, and it is because of this generality that
it finds itself not limited to pi contexts. (It was an earlier version of Milner’s
framework [44] that partly inspired Honda’s framework, above). Milner’s cur-
rent work on minimal contexts is a first part of the project to develop the theory
of bisimulation for his framework. The theory for the explicit fusion calculus,
developed in the following chapter, provides a benchmark; we return to the issue
technically in Section 3.5.

Chapter 3

Bisimulation for the explicit
fusion calculus

In this chapter I develop the theory of bisimulation for the explicit fusion cal-
culus. Bisimulation is a standard technique, but must be customised for each
calculus for which it is used. Many definitions in this chapter are therefore vari-
ations of definitions that have appeared elsewhere, and some of the theorems
are variations of theorems used for other calculi.

The chief accomplishments of this chapter are to show that barbed congru-
ence and ground congruence coincide for the explicit fusion calculus, and to
provide an efficient characterisation of them. Also to establish that, up to weak
bisimulation, equators behave like explicit fusions. The novel technical contri-
butions include a generalisation of Milner’s concretions [45] and an ‘ask’ fusion
transition.

The plan of the chapter is as follows. It is intended to be read in order: each
section depends on almost all previous sections.

3.1 Overview. This section is a brief introduction to bisimulation.

3.2 Labels and interfaces. We give a labelled transition system for the explicit
fusion calculus. It is simpler than that for the fusion calculus; nevertheless
(Chapter 4) it yields the same equivalence. This section’s version of the
transition system is defined over structurally congruent classes of terms;
an equivalent characterisation, but defined over terms themselves, is given
in Section 3.6.

3.3 Ground bisimulation. We define strong ground bisimulation and congru-
ence. They are similar in spirit to the very late bisimulation of San-
giorgi [59], also known as open bisimulation. We state that for two pro-
grams to be ground congruent, to have the same behaviour in all contexts,
it is necessary and sufficient that their explicit fusions generate the same
equivalence relation (‘they have the same explicit fusions on the inside’)
and they have the same behaviour in all explicit fusion contexts (‘explicit
fusions on the outside’). Sections 3.4 to 3.7 introduce the techniques nec-
essary to prove this statement, and culminate in the proof.

29

CHAPTER 3. BISIMULATION 30

3.4 Fusion transitions. We introduce the ‘ask’ fusion label, which indicates
that a term can react if provided with an explicit fusion. It is similar to
a label used by Sangiorgi for his efficient characterisation of pi calculus
open bisimulation. A variant of the label has appeared in recent work by
Milner [46]. It is not the same as the ‘tell’ fusion labels used in the fusion
and chi calculi.

3.5 Efficient characterisation. We give an efficient characterisation of ground
congruence: that is, a definition that does not involve quantifying over all
contexts. It uses the ‘ask’ fusion labels.

3.6 Structural labels. We give a compositional characterisation of the labelled
transition system. With this we can deduce a term’s labelled transitions
through induction on its structure. Our compositional characterisation
uses the ‘ask’ fusion labels.

3.7 Ground congruence. Proofs of congruence. We prove the theorem stated
in Section 3.3, which characterises necessary and sufficient conditions for
congruence. We also prove that the efficient characterisation in Section 3.5
is the same as ground congruence.

3.8 Barbed bisimulation. We define barbed bisimulation and barbed congru-
ence. The congruence turns out to be the same as ground congruence.

3.9 Equators. We define weak bisimulation and equators. Up to weak bisim-
ulation, equators are like explicit fusions: they allow names to be inter-
changed.

3.1 Overview of bisimulation

Bisimulation has become a standard technique for characterising the behaviour
of programs in concurrent calculi. This section is a brief overview of bisim-
ulation.

A software engineer needs to be able to tell whether two subroutines have
the same behaviour: if they have, then the faster one can be used instead of the
slower for instance. An optimising compiler must also be sure that none of its
optimisations alter the behaviour of the program.

The problem is to define ‘behaviour’. In a functional language it is easy:
two programs have the same behaviour if and only if they give the same output
for all possible inputs (ignoring for the moment the issue of non-termination).
We might simply say that their behaviour is that mathematical object, the
function from inputs to outputs. If one program calls the other, the overall
behaviour is simply the composition of their two functions. In an interactive
and concurrent language, however, it is much harder to define behaviour. This
is because two programs in parallel may interact together in subtle ways: it is
hard to characterise the composition of their behaviours.

A common approach is bisimulation. For two programs to be bisimilar, they
must be able to perform the same external inputs and outputs at every stage
in their execution. If one is able to send a free or locally created name, then
the other must also be able to send the same free name or any local name. If
one receives a free or local name, then the other must receive the same free

CHAPTER 3. BISIMULATION 31

name or any local name. (This symmetry between sending and receiving is less
apparent in the pi calculus, where free names are never received). A bisimulation
relation is a relation that contains only bisimilar programs. The union of all
bisimulations is itself a bisimulation; we call it the bisimulation. It is defined
for the explicit fusion calculus in Section 3.3.

Our goal is to allow a faster implementation to be used in place of a slower
one, so long as the two have the same behaviour. On the other hand, one might
say that speed of execution is itself an aspect of behaviour. We say that two
programs are strongly bisimilar if they have the same speed (measured as the
number of internal reaction steps), or weakly bisimilar when we allow different
speeds. The weak version has greater practical use, but is technically more
awkward. We discuss weak bisimulation in Sections 3.9, show that equators
behave like fusions in the weak case, and show how the awkwardness arises.

It is not in general possible to tell when two programs have the same be-
haviour. We must settle for two less ambitious goals: first to identify the platonic
ideal of program equivalence, and second to come up with a sound approxima-
tion. For the engineer, it should be an approximation that is easy to use in
proofs. For the compiler, it must be a decidable approximation. For our ideal,
we take strong bisimulation. We discuss possible approximations below.

It is not enough just to know that two subprograms have the same behaviour
themselves. We also need to know that in any larger program (context) in which
the subprograms are used, that larger program will still have the same behaviour
no matter which subprogram is used. Whenever an equivalence holds in all
contexts in this way, we call it a congruence. The efficient bisimulation given
in Section 3.5 is a sound and complete characterisation for strong bisimulation
congruence. Efficient bisimulation avoids an infinite quantification over contexts
and so is easier to use in proofs than the congruence. Efficient bisimulation is
also decidable for programs with finitely many states.

For a concrete example, in a conventional imperative language, consider the
following two implementations of a ‘swap’ program. These are written in ML.
In them, the names x and y are pointers to integer variables, ! de-references a
pointer, := assigns a new value, and xor is a bitwise exclusive-or operator.

fun swap x y = (fun swap x y = (
x := !x xor !y ; let val z = !x in
y := !x xor !y ; x := !y ;
x := !x xor !y); y := z end);

The version on the left avoids using a temporary value. However, it fails in a
context where x and y point to the same variable, such as the context x y. The
two programs are therefore not congruent.

Not all applications require subprograms to behave the same in all contexts.
For instance, an optimising compiler often knows about the context in which the
optimised fragment will be placed. And typically an engineer will expect a sub-
program to be used only in a context which fulfills particular pre-conditions. The
distinction-full bisimulation of Sangiorgi [59] (formerly known as indexed bisim-
ulation) allows one to specify only contexts in which two names are different.
Sometimes, for concurrent systems, we are only interested in contexts which
execute concurrently with the subprogram: a relation is called a behavioural
equivalence rather than a congruence when limited to these contexts.

CHAPTER 3. BISIMULATION 32

Congruence alone is not sufficient in concurrent systems. After one program
has executed for a time, a user might change the context by starting another
program, or by physically connecting two networks together. If the concur-
rent system is also distributed, then a program might also be packaged up and
shipped for further execution to a new location and a new context. We are there-
fore more interested in a version of congruence where, even after some execution
steps, the resulting programs are still congruent. This is called reduction-closed
congruence.

Reduction-closed congruence seems more appropriate for concurrent sys-
tems. However, many authors only define their relations to be context-closed
before any execution has taken place—a shallow form of congruence.

A bisimulation might be too large to be useful, relating things that have the
same behaviour even though they might differ in particular contexts. That is
why congruence is important. On the other hand, a bisimulation might be too
small to be useful—for instance, the identity relation is a bisimulation and a
congruence, but it does not help us compare programs. Fortunately it turns out
that the infinite union of all bisimulation congruences is itself a bisimulation
congruence: two programs are interchangeable in all contexts if and only if they
are related by this largest bisimulation congruence. It is neither too small nor
too large.

Observational equivalence is another approach. By a twist of perspective,
we ask whether an observer program can discriminate between two particular
programs. The programs are said to be observationally equivalent if and only
if no observer can distinguish them. Normally we assume that an observer can
observe the sending and receiving of free and local names, and can observe only
this. If the observer is allowed to grow, then observational equivalence is the
same as reduction-closed behavioural equivalence. If the observer is kept fixed,
then observational equivalence is the same as shallow behavioural equivalence.

One might also consider the stronger observational congruence, where the
observer is able to prefix or replicate or restrict the program it observes. This
corresponds to reduction-closed congruence or to shallow congruence.

The ability to send or receive a name is expressed as a four-tuple written P
µ−→

I : P ′. This means that a program in state P can perform an output or input
command over channel µ; it will send or receive the data I and end up in state
P ′. (We define these four-tuples formally in Section 3.2). For two programs P
and Q to be bisimilar as described above, then for every transition that P can
make, the program Q must also make the same transition, so that the results of
both are bisimilar; and likewise P must match Q’s transitions. To show that two
programs are bisimilar, the typical proof technique is to exhibit a relation; then
establish that, for any two related programs, they perform matching transitions
such that the resulting programs are also in the relation. If this can be shown
for all related programs, then the relation is a bisimulation.

We will write P
u−→ (x)(x : P ′) for a local name x being received over

channel u. Equivalently, P u−→ I : P ′ where I = (x)(x :). Note that the scope
of the name x includes P ′, and that it can be alpha-renamed.

There is ambiguity in the previous paragraph, according to when x is in-
stantiated. The possibilities are, in increasing order of strength:

• (Ground) If P is bisimilar to Q and P u−→ (x)(x : P ′) then there exists a

CHAPTER 3. BISIMULATION 33

Q′ such that Q u−→ (x)(x : Q′) and P ′ is bisimilar to Q′.

• (Early) If P is bisimilar to Q and P
u−→ (x)(x : P ′) then for all y there

exists a Q′ such that Q u−→ (x)(x : Q′) and P ′{y/x} is bisimilar to Q′{y/x};

• (Late) If P is bisimilar to Q and P u−→ (x)(x : P ′) then there exists a Q′

such that Q u−→ (x)(x : Q′) and, for all y, P ′{y/x} is bisimilar to Q′{y/x};

• (Very late) If P is bisimilar to Q and P
u−→ (x)(x : P ′) then there exists

a Q′ such that Q u−→ (x)(x : Q′) and P ′ is bisimilar to Q′; and moreover,
whenever any P is bisimilar to any Q, then for all substitutions σ, Pσ is
also bisimilar to Qσ.

• (Ground congruence) As for ground, and moreover whenever any P is
bisimilar to any Q, then for all contexts E, E[P] is bisimilar to E[Q].

The difference between these possibilities are subtle, and to some extent
depend on the calculus for which they are being used.

Ground, early and late bisimulations are too large to be congruences: they
deem some programs equivalent that a context can distinguish. However, if we
disallow contexts from prefixing a term, and if we are in the pi calculus, then
early and late bisimulation are congruences.

Very late bisimulation is too large in the explicit fusion calculus, but is
smaller than necessary in the pi calculus. That is to say, in the pi calculus,
there are some programs which no context can distinguish but which are not
related by very late bisimulation. Consider the example (x)(ux.P). In the pi
calculus, no other name will ever substitute for x inside P , and so we should
not quantify over substitutions that involve x. Sangiorgi uses his distinction-
full bisimulation to respect this fact, thereby arriving at a larger congruence.
Distinctions are not needed for the explicit fusion calculus, however, since for
example the program uy | (x)(ux.P) can substitute y for x in P . Thus, explicit
fusion contexts are more discriminating than pi contexts.

Ground congruence is by definition the largest ground bisimulation that is a
congruence, but the quantification over contexts makes it an awkward definition
to work with.

The choice of whether to use early, late or very late seems complicated and
arbitrary. In an attempt to simplify matters for the pi calculus, Sangiorgi and
Milner introduced barbed bisimulation [48]. This simply ignores the data that is
transmitted, and ignores the resulting state for all but tau transitions. It turns
out, fortunately, that the largest barbed bisimulation congruence is equal to the
largest ground bisimulation congruence—both in the explicit fusion calculus and
the pi calculus. We will write barbs as, for example, ux.P u−→, sharing notation
with labelled transitions; other authors write them as ux.P ↓ u.

3.2 Labels and interfaces

Let the labelled transition relation be a set containing four-tuples P α−→ I : P ′.
This four-tuple means that a program in state P can make the commitment α to
react, communicating the data I and ending in state P ′. For example, a program
ux.P can commit to u. After the commitment, what is left is the concretion

CHAPTER 3. BISIMULATION 34

x : P . A program such as u.P | u.Q might also commit to an internal reaction
u.P | u.Q τ−→ ∅ : P | Q. We normally write this as just P | Q since there is no
data to communicate. The labelled transitions are the four-tuples, and the label
is whatever expression is written above the arrow: for the moment, it is the same
as the commitment. Although the entire set of four-tuples is commonly called a
relation, the standard properties of relations such as reflexivity, symmetry and
transitivity only apply to pairs (P, P ′) related by P τ−→ ∅ : P ′. (Many authors

use the notation P
µI−→ P ′ instead of P

µ−→ I : P).

Definition 9 (Commitments) The set of commitments is {τ} ∪ N ∪N .

Let α range over commitments, and µ over non-tau commitments. We write
x 6∈ α to mean that α is neither x nor x.

The concretions we will use here are a symmetric generalisation of those used
by Milner for the pi calculus [45]. The pi calculus distinguishes between wholly-
binding input concretions (x̃)(x̃ : P) called abstractions, and possibly-binding
output concretions (ỹ)(x̃ : P) with ỹ ⊆ x̃. But the explicit fusion calculus
has non-binding input, so both input and output commands lead to the same
possibly-binding concretions. (Milner uses the notation (x̃)P for abstractions
and νỹ〈x̃〉.P for concretions).

Definition 10 (Concretion) A concretion has the form (x̃)(ỹ : P) where the
names in x̃ are distinct and contained in ỹ, and no x ∈ x̃ is fused by Eq(P).

Let C,D range over concretions. For a concretion (x̃)(ỹ : P), we call the context
I = (x̃)(ỹ :) the interface of the concretion, and we write the concretion as
I : P . The names x̃ are bound in this concretion.

Concretions will be used up to structural congruence. This is to express the
precise conditions under which one transmitted datum is the same as another: a
free name matches the same free name, and any bound name matches any other
bound name. The rules for structural congruence are a little more complicated
here than they are for pi calculus concretions. This is because of the possibility
that explicit fusions might affect the names in a concretion.

The side condition to the above definition—that no x ∈ x̃ is fused by
Eq(P)—simplifies this problem. It will mean that when two concretions I1 : P1

and I2 : P2 are structurally congruent, then their contents are structurally con-
gruent. (We will use structural congruence on concretions, as well as some
operators, in presenting a labelled transition system for the explicit fusion cal-
culus.)

The definition of structural congruence is awkward; we follow it with some
illustrative examples.

Definition 11 (Structural congruence) The structural congruence on con-
cretions is defined by: (x̃1)(ỹ1 : P1) ≡ (x̃2)(ỹ2 : P2) if and only if there exist
fresh distinct x̃ of the same length, and permutations π1 and π2, and substi-
tutions σ1 = {x̃/π1x̃} and σ2 = {x̃/π2x̃} such that P1σ1 ≡ P2σ2 and ỹ1σ1 is
identical to ỹ2σ2 up to Eq(P1).

CHAPTER 3. BISIMULATION 35

For example:

(x)(xy : P) ≡ (x)(xy : Q) if P ≡ Q Structural congruence on terms
(x)(xy : P) ≡ (z)(zy : P{z/x}) Alpha-rename bound names

(xy)(xyz : P) ≡ (yx)(xyz : P) Reorder bound names
(x)(xy : P |y z) ≡ (x)(xz : P |y z) Fusion-interchange free names

There is no rule to fusion-interchange bound names. This is because terms would
would allow it, such as (x)(xy : P |x z), we defined not to be valid concretions:
no bound names may be fused. We would instead write this as zy : (x)(P |x z).

Because of the condition that no bound names are fused, and because P1σ1 ≡
P2σ2, then Eq(P1) = Eq(P2). Therefore, the definition is symmetric.

Restriction and parallel composition on concretions are straightforward. We
also use the application operator @. When one program commits to sending
data and another commits to receiving data then the result is an application of
their two concretions.

Definition 12 (Operators) Restriction, composition and application of con-
cretions are as follows. Assume by alpha-renaming that x̃1 and x̃2 do not inter-
sect, and x̃1 binds no name free in P2 and x̃2 binds no names free in P1.

(z) (x̃)(ỹ : P) def=


(x̃)(ỹ : P) if z ∈ {x̃}
(zx̃)(ỹ : P) if z ∈ {ỹ} − {x̃}
(x̃)(ỹ : (z)P) otherwise

(x̃1)(ỹ1:P1) | (x̃2)(ỹ2:P2)
def= (x̃1x̃2)(ỹ1ỹ2 : P1 | P2)

(x̃1)(ỹ1:P1) @ (x̃2)(ỹ2:P2)
def= (x̃1x̃2)(ỹ1 ỹ2 | P1 | P2)

We will at times have cause to treat terms as concretions, in order to write
general rules that apply to both terms and concretions. In this case the term P
stands for the concretion ()(∅ : P).

The following definition gives the labelled transitions a term might undergo.
This is used in ground bisimulation: if one term undergoes a labelled transition,
then the other term must undergo the same labelled transition. In the definition,
recall that C and D range over concretions.

Definition 13 (Labelled transitions) The labelled transition relation P α−→
I : P ′ is the smallest relation satisfying

µx̃.P
µ−→ x̃ : P

ux̃.P | uỹ.Q τ−→ x̃ ỹ | P | Q

P | Q α−→ C | Q if P α−→ C

(x)P α−→ (x)C if P α−→ C and x 6∈ α

Q
α−→ D if Q ≡ P

α−→ C ≡ D

Note that τ−→ is exactly the same as the reaction relation (Definition 4, page 24).
The following lemma shows that transitions never un-fuse any names that

have been fused.

CHAPTER 3. BISIMULATION 36

Lemma 14 If P α−→ I : P ′ then Eq(P) ⊆ Eq(P ′).

Proof. By rule induction on the derivation of P α−→ I : P ′, using Corollary 8
(page 25) for the case of structural congruence. 2

3.3 Ground bisimulation

We now define ground bisimulation ·∼g and reduction-closed ground congru-
ence ∼g.

The definition of ground congruence simply states the property that the
relation is closed under all contexts. In practice, this is too hard a property
to work with. It turns out that there is a simpler property which turns out to
be equivalent: two terms are ground congruent if and only if they are ground
bisimilar, and have the same explicit fusions on the inside, and behave the same
with any explicit fusions on the outside. This property was inspired by the
hero of Le Petit Prince [12], who made a study of elephants on the inside and
outside of boa constrictors. The section concludes with a definition of this inside-
outside bisimulation io∼g; the proof that it is equivalent to ground congruence is
substantial and will take several more sections.

Definition 15 (Ground bisimulation) A ground bisimulation is a relation
S on terms such that if P S Q then, assuming I binds no names free in P or
Q,

• P
α−→ I : P ′ implies Q α−→ I : Q′ and P ′ S Q′; and

• Q
α−→ I : Q′ implies P α−→ I : P ′ and P ′ S Q′.

The infinite union ·∼g of all ground bisimulations, defined ·∼g= {(P,Q) : ∃ S:
P S Q} is itself a ground bisimulation, and therefore the largest ground bi-
simulation. We call it just the ground bisimulation. It is also an equivalence
relation: it is transitive because, from any two ground bisimulations S1 and S2,
their transitive closure S= {(P,R) : ∃Q : P S1 Q S2 R} is also a ground bi-
simulation. It is reflexive because every term has the same transitions as itself.
And it is symmetric through symmetry of the definition.

Ground bisimulation is not a congruence—i.e. it is not closed with respect
to contexts. This is why not:

(1) The programs u v and 0 are ground bisimilar, since neither undergoes
any transitions. But consider them inside the context | u | v . The first allows
a reaction; the second does not. Two congruent terms must necessarily contain
the same explicit fusions inside.

(2) For our second counter-example we will use the summation operation,
which allows a choice of which summand to use. We do this because summation
allows for a succinct counter-example. For an analogous example which does
not use summation, see Example 68. Now the programs u | v and u.v + v.u are
ground bisimilar. But consider them inside the context | u v. The first might
undergo a reaction; the second will not. Two congruent terms must necessarily
behave the same with explicit fusions outside. Indeed, this just is a special case
of the definition of congruence.

Definition 16 (Ground congruence) A ground bisimulation S is a reduc-
tion-closed ground congruence if whenever P S Q then

CHAPTER 3. BISIMULATION 37

• for all contexts E, E[P] S E[Q].

The largest reduction-closed ground congruence ∼g exists and is an equivalence.
This definition of congruence is an awkward one to use, since it involves

quantifying over all contexts. Happily, the two necessary conditions for congru-
ence given above also turn out to be sufficient. This allows for a more convenient
characterisation:

Definition 17 (Inside-outside) A ground bisimulation S is an inside-outside
bisimulation iff whenever P S Q then

• Eq(P) = Eq(Q),

• for all fusions φ: φ|P S φ|Q.

The largest inside-outside bisimulation io∼g exists, and is equal to ground con-
gruence:

Theorem 18 P ∼g Q if and only if P io∼g Q.

Proof. The forward direction is as follows. There are two properties from Defi-
nition 17 to prove. The second is an immediate consequence of the fact that S
is a congruence. For the first, suppose the contrary: there exist u, v such that
(u, v) ∈ Eq(P) but (u, v) 6∈ Eq(Q). Let x, y be names not occurring in P or Q.
Consider the example P | ux | vy | x. This undergoes the transitions

P | ux | vy | x τ−→ P | x y | x y−→ P | x y

But no single tau transition in Q can result in x y; therefore no
y−→ can follow

a single tau transition; therefore S is not congruence. This contradicts the
assumption that S is a ∼g. Therefore, Eq(P) = Eq(Q).

The reverse direction involves proving that io∼g is a congruence. It is sub-
stantially more complicated, involving an assortment of new techniques. These
are introduced in Sections 3.4 to 3.6. The proof will eventually be completed in
Section 3.7. 2

3.4 Fusion transitions

This section describes a type of labelled transition called an ‘ask’ fusion tran-
sition. It simplifies the task of testing for congruence: Theorem 18 has already
said that we need only test over fusion contexts rather than all contexts; and
with this label we need not even test over fusion contexts. A form of ask transi-
tions was first used by Sangiorgi for the pi calculus. The ask fusion transitions
should not be confused with the ‘tell’ fusion transitions of the fusion and chi
calculi; we discuss the difference in Section 3.6.

Consider the ask transition

ux.P | vy.Q ?u v−→ x y | P | Q.

We have presented a notation without yet explaining its meaning. There are two
meanings that might be understood: either it tells about a program’s syntax,
or it tells about the program’s behaviour.

CHAPTER 3. BISIMULATION 38

• (Syntactical) This program contains an output on the free channel u and
an input on v, or vice versa.

• (Behavioural) In the presence of a context u v | , the program can react.

We will adopt the syntactical meaning. The difference between syntax and
behaviour is not always clear, since syntax always implies behaviour, and some-
times behaviour can only come from a particular syntax.

Let λ range over the labels {?x y, τ} ∪ N ∪ N . We write x 6∈ λ to mean that
λ is neither x, x, nor any fusion label involving x. We deem ?x y equivalent to
?y x.

Definition 19 (Efficient labelled transitions) The efficient labelled transi-
tion relation P

λ−→e I : P is the smallest relation satisfying

µx̃.P
µ−→e x̃ : P

ux̃.P | uỹ.Q τ−→e x̃ ỹ | P | Q

ux̃.P | vỹ.Q ?u v−→e x̃ ỹ | P | Q

P | Q λ−→e C | Q if P λ−→e C

(x)P λ−→e (x)C if P λ−→e C and x 6∈ λ

Q
λ−→e D if Q ≡ P

λ−→e C ≡ D

In the third rule, u and v may be the same. For instance, u.P |u.Q ?u u−→e P |Q.
The following lemma relates the transitions α−→ in the normal labelled tran-

sition system, to a subset of transitions λ−→e in the efficient labelled transition
system. Recall that α ranges over {τ} ∪ N ∪ N , while λ ranges over the same
plus fusion labels.

Lemma 20 P
α−→ C if and only if P α−→e C.

Proof. −→e has the same definition as −→ (Definition 13, page 35) plus one
extra rule introducing fusion transitions. Therefore the derivation of P α−→ P ′

has the same structure as the derivation of P α−→e P
′. 2

3.5 Efficient bisimulation

Our overall larger goal is to define a bisimulation which generates the same re-
lation as ground congruence—but without requiring an unwieldy quantification
over all possible contexts. Inside-outside bisimulation (Definition 17, page 37)
simplifies the task, by only requiring a quantification over fusion contexts u v | .
Now, using fusion labels, we will define an alternative characterisation of inside-
outside bisimulation which avoids all context-quantifications entirely.

Consider the following property of inside-outside bisimulation:

• For all u and v, if P S Q and u v|P α−→ I : P ′ then u v|Q α−→ Q′ and
P ′ S Q′

CHAPTER 3. BISIMULATION 39

We will use the efficient labelled transition system, and in particular the fusion
transition P

?u v−→e P
′, to express this without the need for the quantification.

Recall however that our fusion transition actually declares more information
about P : not just that it can react in a context u v | as required in the property,
but also that it contains input and output commands. We will therefore remove
this additional information:

• If P S Q and P ?u v−→e P
′ then u v|Q τ−→e Q

′ and u v|P ′ S Q′.

The extra information has been removed from the consequent, since u v|Q τ−→e

Q′ says nothing about whether Q contains input and output commands on u or
v.

Motivated by this connection with inside-outside bisimulation, we now de-
fine a new bisimulation e∼g which uses fusion labels. We call it the efficient
bisimulation because it involves no infinite quantifications.

Definition 21 (Efficient bisimulation) An efficient bisimulation is a sym-
metric relation S such that if P S Q then, assuming I binds no names free in
Q,

• P
α−→e I : P ′ implies Q α−→e I : Q′ and P ′ S Q′,

• P
?u v−→e P

′ implies u v|Q τ−→e Q
′ and u v|P ′ S Q′,

• Eq(P) = Eq(Q).

Our overall goal is to prove that inside-outside bisimulation is equal to
ground congruence. Efficient bisimulation will provide an intermediary between
the two:

Theorem 22 P
io∼g Q if and only if P e∼g Q.

The proof again is substantial, and will use a structural characterisation of
µ−→e

developed in the following section.

A slightly different ask fusion label has appeared recently in work by Milner [46],
and it is interesting to compare it and its bisimulation to the work here.

Milner’s fusion label P
u v|−→ P ′ means that u v| is a minimal context needed

to allow reaction: that is to say, P ?u v−→ P ′ and (u, v) 6∈ Eq(P). It originates
from a project [63] to use minimal contexts as a systematic way of generating
labelled transitions and bisimulations. These systematically-generated bisimu-
lations require that all labels match exactly:

• If P S Q and P
u v|−→ P ′ then Q

u v|−→ Q′ and u v|P ′ S u v|Q′.

This says: if P can only react in a context u v | , then so too Q can only react
in that context.

We might summarise the difference between our efficient bisimulation and
Milner’s bisimulation as follows.

• (Efficient) If one program can react in a context u v | then so can the
other.

CHAPTER 3. BISIMULATION 40

• (Milner) If one program can only react in that context, then so can the
other.

Now we will see in Section 3.7 that efficient bisimulation is motivated by the
fact that it is equal to ground congruence. However, it is not yet known whether
Milner’s bisimulation generates a familiar congruence. It is conceivable, though
not yet proven, that the two bisimulations might generate the same congruence.

3.6 Structural labels

The labelled transition system given in Definition 19 (page 38) uses structural
congruence. This makes it easy to understand the transitions, but awkward to
enumerate all transitions possible from a given state. We now give an equivalent
characterisation of the labelled transition system in which the labels of a term
are deduced inductively on its structure.

The novel aspect is the use of the ‘ask’ fusion transitions introduced earlier.
These are needed because of the following property of explicit fusions: in parallel
with a program, they can allow tau transitions where perhaps none were possible
before. For instance, u.P | v.Q has no tau transition in itself, but it does in the
context u v | . Therefore, the structured transition system needs to record: ‘this
part of the program has the potential for a tau transition, if it gets placed next
to an explicit fusion’. Fusion transitions fulfil this need. (The fusion calculus
also uses a fusion label to indicate a potential transition; but this is a different
potential, and a different ‘tell’ fusion label, explained in Section 4.2. The pi
calculus has no potential tau transitions—in it a term’s transitions depend solely
on the subcomponents of that term. Therefore the pi calculus does not need
fusion transitions.)

Fusion transitions kill two birds with one stone. First, as discussed above,
they allow for a structural labelled transition system by recording potentials.
Second, as discussed in the previous section, they simplify the task of testing
congruence by removing the need for an infinite quantification over fusion con-
texts. It is not clear to me whether these two birds are from the same bush.

We will write P ` λ = λ′ when P contains sufficient fusions to turn the label
λ into λ′. The definition is given below. This notation generalises that of
Definition 6, which only applied to names.

Definition 23 (Label equality) The binary relation P ` = on labels is
the least relation satisfying the following rules:

P ` ?u v =?v u
P ` x = y if (x, y) ∈ Eq(P)
P ` x = y if (x, y) ∈ Eq(P)
P ` ?x y =?u v if (x, u) ∈ Eq(P) and (y, v) ∈ Eq(P).

Definition 24 (Structured LTS) The structured labelled transition system

CHAPTER 3. BISIMULATION 41

P
λ−→s I : P ′ is the smallest relation satisfying

ux̃.P
u−→s x̃ : P ux̃.P

u−→s x̃ : P

P
u−→s C Q

v−→s D

P | Q ?u v−→s C@D

P
u−→s C Q

v−→s D

P | Q ?u v−→s C@D

P
?u u−→s C

P
τ−→s C

P
λ−→s C

P | Q λ−→s C | Q

Q
λ−→s D

P | Q λ−→s P | D

P
λ−→s C P ` λ=λ′

P
λ′
−→s C

P | !P λ−→s C

!P λ−→s C

P
λ−→s C x 6∈ λ

(x)P λ−→s (x)C

P
λ−→s C ≡ D

P
λ−→s D

Recall that the application operator @ is defined in Section 3.2. The transition
P

u−→s C describes an output commitment that P can make, and the data
it will send is recorded in the interface of the concretion C. The transition
Q

u−→s D describes an input commitment thatQ can make. And the application
P |Q ?u v−→s C@D describes the consummation of those two commitments, and
the concommitant exchange of data.

The following proposition fulfills our goal—of being able to enumerate all
transitions possible from a given program.

Proposition 25 If we have a transition P
λ−→s C, then the transition is in

fact one of the following:

ux̃.Q
u−→s≡ x̃ : Q

ux̃.Q
u−→s≡ x̃ : Q

(z)Q λ−→s≡ (z)D with Q λ−→s D, z 6∈ λ

(z)Q τ−→s≡ (z)Q′ with Q ?u u−→s Q
′

!Q λ−→s≡ D | !Q with Q λ−→s D

!Q τ−→s≡ D1@D2 | !Q with Q u−→s D1, Q
u−→ D2

!Q ?u v−→s≡ D1@D2 | !Q with Q u−→s D1, Q
v−→ D2

Q1 | Q2
λ−→s≡ D1 | Q2 with Q1

λ′

−→s D1, Q1|Q2 ` λ=λ′

Q1 | Q2
λ−→s≡ Q1 | D2 with Q2

λ′

−→s D2, Q1|Q2 ` λ=λ′

Q1 | Q2
τ−→s≡ Q′

1 | Q2 with Q1
?u v−→s Q

′
1, Q1|Q2 ` u=v

Q1 | Q2
τ−→s≡ Q1 | Q′

2 with Q2
?u v−→s Q

′
2, Q1|Q2 ` u=v

Q1 | Q2
τ−→s≡ D1@D2 with Q1

u−→s D1, Q2
v−→s D2, Q1|Q2 ` u=v

Q1 | Q2
τ−→s≡ D1@D2 with Q1

u−→s D1, Q2
v−→s D2, Q1|Q2 ` u=v

Q1 | Q2
?u v−→s≡ D1@D2 with Q1

x−→s D1, Q2
y−→s D2, Q1|Q2 ` ?u v = ?x y

Q1 | Q2
?u v−→s≡ D1@D2 with Q1

x−→s D1, Q2
y−→s D2, Q1|Q2 ` ?u v = ?x y.

CHAPTER 3. BISIMULATION 42

Proof. For most terms and transitions, the proof involves a simple case analysis.
For replication, the proof is by induction on the derivation of the transition. 2

The following lemma and corollary establish that the structured transition
system in this section is indeed just the same as the quotiented transition system
in Section 3.2.

Lemma 26 P ≡ P1
λ−→s C implies P λ−→s C

Proof. For every rule in the structural congruence, we use Proposition 25 to
analyse every possible transition taken by each side of the rule. We illustrate
just with the structural congruence (z)P | Q ≡ (z)(P |Q), for z 6∈ fnQ. Suppose
that (z)(P |Q) λ−→s C. Using Proposition 25 twice, for the restriction and
then for the parallel composition, there are three cases for what the transition
actually is. In all cases, we will prove that (z)P | Q λ−→s C as well.

1. (z)(P |Q) λ−→s≡ (z)(D|Q) with P
λ′

−→ D, P |Q ` λ = λ′ and z 6∈ λ.
Because z is not in fnQ, and hence not in Eq(Q) either, there must exist
some λ′′ with z 6∈ λ′′ and P ` λ′ = λ′′. For if there were not, then
λ′ = z, and neither P nor Q could convert it into any other equal label,
and this would contradict the assumption that P |Q ` λ = λ′ with z 6∈ λ.
It must also be the case that (P\z)|Q ` λ′′ = λ. Now we make a series of
deductions:

P
λ′

−→ D by assumption

P
λ′′

−→ D since P ` λ′ = λ′′

(z)P λ′′

−→ (z)D since λ′′ was assumed not equal to z

(z)P | Q λ′′

−→ (z)D | Q

(z)P | Q λ−→ (z)D | Q since (P\z)|Q ` λ′′ = λ

(z)P | Q λ−→ (z)(D | Q) since (z)P | D ≡ (z)(P |D)

2. (z)(P |Q) λ−→s≡ (z)(P |D) with Q
λ′

−→ D, P |Q ` λ = λ′ and z 6∈ λ. Now
z 6∈ λ′ since z 6∈ fnQ. Also since P |Q ` λ′ = λ, and z 6∈ λ, λ′, then
(P |Q)\z ` λ′ = λ. Moreover, Eq(Q) ⊆ Eq(D), so Eq(P |D)\z also makes
λ′ = λ. We now use these results:

Q
λ′

−→ D by assumption

(z)P | Q λ′

−→ (z)P | D

(z)P | Q λ′

−→ (z)(P | D) since (z)P | D ≡ (z)(P |D)

(z)P | Q λ−→ (z)(P | D) since (P |D)\z ` λ′ = λ

3. (z)(P |Q) ?u v−→ (z)(D1@D2) with P
x−→ D1, Q

y−→ D2, P |Q `?u v =?x y
and z 6∈ {u, v}. Therefore there exists a w such that P ` x = w and

CHAPTER 3. BISIMULATION 43

w 6= z. Moreover, (P |Q)\z `?u v =?w y.

P
w−→ D1 by assumption

(z)P w−→ (z)D1

(z)P | Q ?w y−→ (z)D1@D2

(z)P | Q ?w y−→ (z)(D1@D2) since (z)D1@D2 = (z)(D1@D2)

(z)P | Q ?u v−→ (z)(D1@D2) since (P |Q)\z `?u v =?w y

The other cases are degenerate or mirrored versions of these three. 2

Corollary 27 P
λ−→e P

′ if and only if P λ−→s P
′.

3.7 Ground congruence results

We are finally in a position to provide proofs for the two outstanding proposi-
tions: first that inside-outside bisimulation io∼g is equal to efficient bisimulation
e∼g; second that e∼g is a congruence. These will complete the proof for Propo-
sition 18, that the two bisimulations are equal to ground congruence.

First, we need some technical results to relate fusion labels to explicit fusion
transitions:

Lemma 28

1. P ?u v−→e P
′ implies u v|P τ−→e u v|P ′

2. If Q|x y ` w = z and Q ` ?x y = ?u v then either Q ` ?w z = ?u v or
Q ` w = z.

3. If P `?x y =?u v then P |x y ≡ P |u v.

Proof. The first part is by induction on the structure of P , using Proposition 25
for each case. The other two parts are straightforward manipulations of equiv-
alence classes, using Corollary 8 and Definition 23. 2

Proposition 29 P
io∼g Q if and only if P e∼g Q.

Proof. Compare the definition of inside-outside bisimulation io∼g (Definition 17,
page 37) with that of efficient bisimulation e∼g (Definition 21, page 39). They
are already very similar, so not much work is needed.

In the forward direction, given S= io∼g, we show that it is also an efficient
bisimulation. From Lemma 20, the first parts of the definitions are equivalent.
It remains to prove the second parts. Assume P ?u v−→e P

′. From Lemma 28,
u v | P τ−→e u v | P ′. Since S is a io∼g, and from the first two parts of its
definition, there exists a Q′ such that u v |Q τ−→e Q

′ and u v |P ′ S Q′.
In the reverse direction, we construct S= {(φ |P, φ |Q). P e∼g Q} and prove

that S is an inside-outside bisimulation. The second and third parts of the
definition of io∼g are straightforwardly satisfied. It remains to prove the first.

CHAPTER 3. BISIMULATION 44

Suppose that φ | P µ−→e C. From Proposition 25, the transition is actually

φ | P µ−→e φ | I : P ′ with P
µ′

−→e I : P ′ and φ | P ` µ = µ′. Since P e∼g Q
we deduce that Q

µ′

−→e I :Q′ with P ′ e∼g Q′. From this the appropriate φ |Q
transition can be constructed. 2

We will now prove that e∼g is a congruence.

Proposition 30 (Congruence) If P e∼g Q, then there exists an efficient bi-
simulation S relating P and Q and which is a reduction-closed congruence.

Proof. Construct a relation S which contains e∼g and which is closed under the
following conditions:

1. if P ≡ P1 S Q1 ≡ Q then P S Q;

2. if P S Q then (x)P S (x)Q, µx̃.P S µx̃.Q and !P S !Q;

3. if P1 S Q1 and P2 S Q2 then P1|P2 S Q1|Q2.

Clearly S is a reduction-closed congruence. It remains to prove that it is an
efficient bisimulation, which we do by induction on the closure properties. But
first, a comment on why the third closure condition is as strong as it is. Imagine
the weaker condition that if P S Q then P | R S Q | R and R | P S R | Q. Now
consider the replication case, that P α−→ I : P ′ giving !P α−→ P ′ | !P . We can
deduce that !Q α−→ Q′ | !Q and P ′ S Q′. But now we need closure conditions on
S that are strong enough to deduce that P ′|!P S Q′|!Q. The weaker conditions
are not adequate. That is why we have used stronger conditions.

Now, we perform the induction on the closure properties of S. The induction
property is that two terms related by S fulfill the requirements of an efficient
bisimulation.

1. Suppose P ≡ P1 S Q1 ≡ Q, and suppose P α−→ I : P ′. Then (Defini-
tion 13) P1

α−→ I : P ′. From the induction hypothesis and Definition 13,
Q

α−→ I : Q′ and P ′ S Q′, as desired. The case for fusion labels is simi-
lar. Finally, the induction hypothesis says that Eq(P1) = Eq(Q1), and so
(Lemma 6) we get Eq(P) = Eq(Q).

2a. Suppose (z)P α−→ I : P ′. From Proposition 25, P α−→ J : P1 such that
z 6∈ α and, using restriction on concretions (Definition 12), (z)(J : P1) ≡
I : P ′. From the induction hypothesis, Q α−→ J : Q1, and P1 S Q1.
Since z 6∈ α we get (z)Q α−→ (z)(J : Q1). Since this restricted concretion
is structurally congruent to I : P ′ we get (z)Q α−→ I : Q′ as desired,
with Q′ S P ′. The case for fusion transitions is similar. Finally, from
the induction hypothesis and from the definition of Eq(·), we get that
Eq((x)P) = Eq((x)Q) as desired.

2b. Suppose µx̃.P
µ−→ x̃ : P . It is clear that µx̃.Q

µ−→ x̃ : Q. Moreover, from
the induction hypothesis, P S Q as desired. Finally, from the definition
of Eq(·), we get Eq(µx̃.P) = Eq(µx̃.Q) = I.

CHAPTER 3. BISIMULATION 45

2c. Suppose !P λ−→ I : P1. From Proposition 25, there are three possibilities
A, B and C for what this transition might be:

A1. !P α−→ I : (P ′ | !P) with P
α−→ I : P ′. From the induction hypoth-

esis, Q α−→ I : Q′ and P ′ S Q′. Since we assumed I not to clash,
we get !Q α−→ I : (Q′ | !Q) as desired. Finally we must show that
the result is related by S. Now P S Q, and hence !P S !Q by the
replication-closure of S. And because P ′ S Q′ we get P ′|!P S Q′|!Q
by the parallel-closure of S.

A2. !P ?u v−→ P ′ | !P , with P
?u v−→ P ′. From the induction hypothesis,

u v|Q τ−→ u v|Q2 such that u v|P ′ S u v|Q2. By Proposition 25, the
transition of u v | Q might have arisen in two ways. The first way is
that Q τ−→ Q2; in this case, !Q τ−→ Q2|!Q so that

u v | !Q τ−→ u v | Q2 | !Q. (2)

Now we have !P S !Q, and u v|P ′ S u v|Q2. Putting these together,
using the closure properties of S, we obtain the desired result:

u v | P ′ | !P S u v | Q2 | !Q. (3)

The second way in which the transition of Q might have arisen is
through Q

?x y−→ Q2 with u v|Q ` x = y. In this case, !Q
?x y−→ Q2|!Q,

which again yields Equation 2. And Equation 3 holds in the same
way.

B. !P ?u v−→ C@D | !P with P
u−→ C and P

v−→ D. The notation
is a little cumbersome, so we introduce some abbreviations. Let
C = I : P ′ = (x̃)(ỹ : P ′) and D = J : P ′′ = (w̃)(z̃ : P ′′). Then we
write I@J [P ′|P ′′] = C@D = (x̃w̃)(ỹ z̃ | P ′ | P ′′). Note that x̃ and w̃
were assumed not to bind P ′′ or P ′ respectively. Therefore neither
bind !P and we can write C@D|!P ≡ I@J [P ′|P ′′|!P].

Thus, we rewrite this (B) possibility as !P ?u v−→ I@J [P ′ | P ′′ | !P]
with P u−→ I : P ′ and P v−→ J : P ′′. From the induction hypothesis,
Q

u−→ I : Q′ and Q
v−→ J : Q′′ with P ′ S Q′ and P ′′ S Q′′.

Therefore,

!Q ?u v−→ I@J [Q′ | Q′′ | !Q].

By Lemma 28,

u v | !Q τ−→ u v | I@J [Q′ | Q′′ | !Q]

as desired. We can use the closure properties of S to prove that

u v | I@J [P ′ | P ′′ | !P] S u v | I@J [Q′ | Q′′ | !Q]

as desired. Note that the context u v | I@J [] amounts to some
restrictions and parallel compositions, and so is dealt with by the
restriction and parallel closure properties of S.

CHAPTER 3. BISIMULATION 46

C. !P τ−→ I@J [P ′|P ′′|!P] with P
u−→ I : P ′ and P

u−→ J : P ′′. Then
from the induction hypothesis, Q u−→ I : Q′ and Q

u−→ J : Q′′ with
P ′ S Q′ and P ′′ S Q′′. From the induction hypothesis, Q also makes
these transitions, and this case proceeds in much the same way as
B2.

Finally, to conclude the replication case, Eq(!P) = Eq(P) = Eq(Q) =
Eq(!Q) by the induction hypothesis and the definition of Eq(·).

3. Suppose P1 | P2
λ−→ C. For the equivalence relation, Eq(P1|P2) =

Eq(Q1|Q2) follows directly from the definition of Eq(·) and the induction
hypotheses. For the transitions, Proposition 25 lists eight possibilities.
Discounting the symmetric possibilities leaves us with four cases, A, B, C
and D.

A1. P1 | P2
α−→ C@P2 with P1

α′

−→ C and P1|P2 ` α′ = α. Let C =
I : P ′

1 were I does not clash with P2, Q1 or Q2. Then, through
parallel composition on concretions, and since I does not clash, this
A1 possibility is actually

P1 | P2
α−→ I : (P ′

1 | P2).

Q1 undergoes the same transition Q1
α′

−→ I : Q′
1; and Eq(Q1|Q2) =

Eq(P1|P2), so Q1|Q2 undergoes the transition

Q1 | Q2
α−→ I : (Q′

1 | Q2)

as desired. The closure properties of S ensure that the results are
related in S, just as in the replication case. (The symmetric case,
where P2 does the transition, is similar).

A2. P1 | P2
?u v−→ P ′

1 | P2 with P1
?x y−→ P ′

1 and P1|P2 `?u v =?x y. By the
induction hypothesis,

x y | Q1
τ−→ x y | Q′

1 and x y | P ′
1 S x y | Q′

1.

Therefore x y | Q1 | Q2
τ−→ x y | Q′

1 | Q2. But since Eq(Q1|Q2) =
Eq(P1|P2), and since P1|P2 `?u v =?x y, then by Lemma 28 we get
u v | Q1 | Q2

τ−→ u v | Q′
1 | Q2 as desired. To show that

u v | P ′
1 | P2 S u v | Q′

1 | Q2

we use the fact that explicit fusions are monotonically increasing
(Lemma 14): hence Eq(Q′

1 | Q2) ⊇ Eq(Q1 | Q2). And since Q1|Q2 `
u v, we get that u v | Q′

1 | Q2 ≡ Q′
1 | Q2. The rest follows from

the closure properties of S. (The symmetric case, where P2 does the
transition, is similar.)

B. P1 | P2
τ−→ P ′

1 | P2 with P1
?x y−→ P ′

1 and P1 | P2 ` x = y. From the
induction hypothesis, x y | Q1

τ−→ x y | Q′
1 and x y | P ′

1 S x y | Q′
1.

Therefore, x y | Q1 | Q2
τ−→ x y | Q′

1 | Q2 as desired. And the results
are related by S just as in the previous case. (The symmetric case,
where P2 does the transition, is similar.)

CHAPTER 3. BISIMULATION 47

C. P1 | P2
τ−→ I@J [P ′

1 | P ′
2] with P1

x−→ I : P ′
1, and P2

y−→ J : P ′
2, and

P1 | P2 ` x = y. Recall the notation I@J [·] from part 2c.B of this
proof. By the induction hypothesis, Q1

x−→ I : Q′
1 and Q2

y−→ J : Q′
2

with P ′
1 S Q′

1 and P ′
2 S Q′

2. Therefore Q1 | Q2
?x y−→ I@J [Q′

1 | Q′
2],

so x y | Q1 | Q2
τ−→ x y | I@J [Q′

1 | Q′
2]. Again, we can remove the

x y through monotonicity of explicit fusions as in the previous cases,
giving

I@J [P ′
1 | P ′

2] S I@J [Q′
1 | Q′

2]

as desired. (The symmetric case, where P1 receives a name and P2

sends a name, is similar.)

D. P1 | P2
?u v−→ I@J [P ′

1 | P ′
2]. This and its symmetric form is are a

combination of the previous three cases. 2

At last we can complete the proof for Theorem 18 (page 37), that P ∼g Q if
and only if P io∼g Q. The forward case has already been proved; we now prove
the reverse case.

Proof. From Proposition 30, e∼g is a reduction-closed congruence. From Propo-
sition 29, io∼g is also a reduction-closed congruence. It therefore satisfies Defini-
tion 16 (page 36) and is part of ∼g. 2

Corollary 31 P
e∼g Q if and only if P ∼g Q.

This concludes our study of strong ground congruence. We have established
an efficient characterisation of it, avoiding the need to quantify over infinitely
many contexts. We have also provided a structural characterisation of labelled
transitions. Together, these two results make strong ground congruence easier
to use in proofs.

3.8 Barbed bisimulation

We now define barbed bisimulation ·∼b for the explicit fusion calculus, and
reduction-closed barbed congruence ∼b. In fact, we shall see that barbed con-
gruence and ground congruence are equal. This gives us reason to believe that
we have discovered the ‘true’ reduction-closed congruence for the explicit fusion
calculus. Our belief will be further strengthened by the result in Section 4.3
(page 64), that barbed and ground congruence are also equal to the bisimulation
independently proposed for the fusion calculus by Victor and Parrow [52].

We also define shallow barbed congruence ∼sb, which is only closed with
respect to context at the start. The difference between reduction-closed con-
gruence and shallow congruence was discussed in Section 3.1.

Barbed bisimulation is defined using an observation relation. This is a cut-
down version of labelled transitions that discards some of the information. It is
also defined using the reaction relation (Definition 4) whose definition we repeat
here for convenience.

CHAPTER 3. BISIMULATION 48

Definition 32 (Observation and reaction) The observation relation P
µ−→

is the smallest relation satisfying

µx̃.P
µ−→

P | Q µ−→ if P
µ−→

(x)P
µ−→ if P

µ−→ and x 6∈ µ

Q
µ−→ if Q ≡ P

µ−→

The internal reaction relation P
τ−→ P ′ is the smallest relation satisfying

ux̃.P | uỹ.Q τ−→ x̃ ỹ | P | Q

P | Q τ−→ P ′ | Q if P τ−→ P ′

(x)P τ−→ (x)P ′ if P τ−→ P ′

Q
τ−→ Q′ if Q ≡ P

τ−→ P ′ ≡ Q′

Definition 33 (Barbed bisimulation) A barbed bisimulation is a relation S
such that P S Q implies

• if P
µ−→ then Q

µ−→;

• if Q
µ−→ then P

µ−→;

• if P τ−→ P ′ then there exists a Q′ such that Q τ−→ Q′ and P ′ S Q′;

• if Q τ−→ Q′ then there exists a P ′ such that P τ−→ P ′ and P ′ S Q′.

The largest barbed bisimulation ·∼b exists and is an equivalence.

Definition 34 (Barbed congruence) A barbed bisimulation S is a reduc-
tion-closed barbed congruence iff whenever P S Q then

• for all contexts E, E[P] S E[Q].

The largest barbed congruence ∼b exists and is an equivalence.

Definition 35 (Shallow) Shallow barbed congruence ∼sb relates any two pro-
grams P and Q such that for all contexts E, E[P] ·∼b E[Q].

Clearly, if two programs are related by reduction-closed barbed congruence,
then they are related by shallow barbed congruence. I do not know whether the
converse is true.

We will now prove that reduction-closed barbed congruence and ground con-
gruence coincide. But first, a useful lemma:

Lemma 36 If P and Q are related by a ∼b, then Eq(P) = Eq(Q)

Proof. As for Theorem 18. 2

Proposition 37 If P ∼g Q then P ∼b Q.

CHAPTER 3. BISIMULATION 49

Proof. The proof is straightforward, since ground congruence ∼g (Definition 16,
page 36) is stronger than that of barbed congruence ∼b.

For the first part of Definition 33, suppose P
µ−→. Then there exists an I

and P ′ such that P
µ−→ I : P ′. Therefore Q

µ−→ I : Q′, and hence Q
µ−→. The

tau case and congruence closure are trivial. 2

Proposition 38 If P ∼b Q then P ∼g Q.

Proof. The issue is that ground bisimulation ∼g pays attention to the data
and resulting state of input and output actions, but barbed bisimulation ∼b
discards that information. Our task is to reconstruct it. In particular, we must
reconstruct the concretion P

u−→ I : P ′ from the barb P
u−→. We do this

with a small context uỹ.φ, where φ is a fusion of two fresh names. This will be
our litmus paper: if one term does a reaction that uses the context, and hence
liberates φ, then the other term’s matching reaction must also liberate φ, and
hence use the context. The bulk of the work is then to show that interfaces
match. This amounts to picking apart the fusions involving ỹ, which is possible
since each y ∈ ỹ is fresh and distinct.

The largest barbed congruence relates P to Q. We will show that it is a
ground bisimulation. Tau transitions are the same for ground as they are for
barbed, so we need only consider input and output actions. In fact, we will only
consider output actions, since input actions are the same.

Suppose that P
µ−→; therefore P

µ−→ (x̃)(ũ : P ′) for some x̃, ũ, P ′. Let us
pick ỹ, w1, w2 to be fresh and distinct. The fusion w1 w2 will be our litmus
paper, as discussed. We can deduce the reaction

P | µỹ.(w1 w2)
τ−→ (x̃)(ỹ ũ | w1 w2 | P ′)

where ỹ does not occur in P ′. Let us write P ′′ for the right hand side of this
reaction. Since P and Q are related by a barbed congruence, we can deduce
that Q makes a matching transition

Q | µỹ.(w1 w2)
τ−→ Q′′

with P ′′ S Q′′. In fact, we can say more about the structure of Q′′. First,
note that P ′′ contains a free fusion w1 w2; by Lemma 36, so does Q′′. The only
way this is possible is if the term µỹ.(w1 w2) participated in the reaction. In
particular, there must be some z̃, ṽ such that

Q
u−→ (z̃)(ṽ : Q′)

giving the reaction

Q | uỹ.(w1 w2)
τ−→ (z̃)(ỹ ṽ | w1 w2 | Q′) ≡ Q′′

where ỹ does not occur in Q′.
The next stage of the proof is to show that the interface (x̃)(ũ :) for P

is equal to the interface (z̃)(ṽ :) for Q. In outline: will show that, up to
alpha-renaming and Eq(P ′) and Eq(Q′), x̃ = z̃ and ũ = ṽ. We will use the fact
that each name in ỹ is fresh and distinct. In essence, for each yi, there are two
possibilities: it might be fused to a free name ui, in which case (Lemma 36)

CHAPTER 3. BISIMULATION 50

the fusion yi vi in Q′′ is the same; or it might be fused to a bound name ui, in
which case it must also be fused to a bound name in Q′′.

To turn the above outline into a precise proof, we now pay more attention to
equivalence classes of names. By Lemma 36, using the notation for equivalence
relations (Definition 5, page 25),

(ỹ ũ⊕ Eq(P ′))\x̃ = (ỹ ṽ ⊕ Eq(Q′))\z̃.

To obtain this we have omitted the fusion w1 w2, since it is the same on both
sides and the names w1 and w2 were assumed fresh. Recall also (Definition 10,
page 34) that the names x̃ are distinct and contained in ũ, and no names in x̃
are fused by Eq(P ′). Similarly, the names z̃ are distinct and contained in ṽ, and
no names in z̃ are fused by Eq(Q′). Therefore,

(ỹ ũ\x̃)⊕ Eq(P ′) = (ỹ ṽ\z̃)⊕ Eq(Q′). (4)

Now some of the names ũ are bound by x̃, and some are not. Let the projection
functions π1 and π2 project those names that are, and those that are not,
respectively. That is to say, {π1ũ} ⊆ {x̃} and {π2ũ} ∩ {x̃} = ∅. Hence, every
name in π1ũ is bound, and no name in π2ũ is. We can therefore rewrite the left
side of Equation 4:

(π1ỹ π1ũ)\x̃⊕ π2ỹ π2ũ⊕ Eq(P ′). (5)

This relates every π2ỹ to some name not in ỹ. Note that (π1ỹ π1ũ)\x̃ generates
an equivalence relation which only relates names in π1ỹ to each other. This is
because all π1ũ were assumed to be in x̃. Then, since ỹ was assumed fresh and
not in P ′, Equation 5 relates no name in π1ỹ to any name not in ỹ.

By Lemma 36, the right hand side of Equation 4 also relates every π2ỹ to
some name not in ỹ, and no π1ỹ to any name not in ỹ. We can therefore rewrite
the equation:

(π1ỹ π1ũ)\x̃⊕ π2ỹ π2ũ⊕ Eq(P ′) = (π1ỹ π1ṽ)\z̃ ⊕ π2ỹ π2ṽ ⊕ Eq(Q′). (6)

We can analyse each side of Equation 6 in two parts: the first part only
relates names in π1ỹ to each other, and the second relates names in π2ỹ to
various free names. The first part is as follows:

(π1ỹ π1ũ)\x̃ = (π1ỹ π1ṽ)\z̃. (7)

Because {π1ũ} ⊆ {x̃} by construction of π, and because {x̃} ⊆ {π1ũ}, we get
{x̃} = {π1ũ}.

Let n be the length of the list π1ỹ, which is also the length of π1ũ and
π1ṽ. Let m be the length of x̃. Consider the surjective function f : {1 . . . n} 7→
{1 . . .m} such that f(i) = j when ui = xj . This function is well-defined because
each xj ∈ x̃ is distinct, and {π1ũ} = {x̃}. Now the left side of Equation 7 relates
only those names yi yj such that f(i) = f(j). By Lemma 36, so does the right
side. Therefore the same surjective function applies. The first consequence of
this is that |z̃| = |x̃|. Since the names in z̃ are distinct, there is a substitution
σ such that σz̃ = x̃. The substitution amounts to alpha-renaming. The second
consequence is that π1σṽ = π1ũ. Thus, we have shown that the bound names
in ũ are the same as those in ṽ, up to alpha-renaming.

CHAPTER 3. BISIMULATION 51

Next, we consider the free names in ũ. The second parts in Equation 6 are
as follows:

π2ỹ π2ũ⊕ Eq(P ′) = π2ỹ π2ṽ ⊕ Eq(Q′).

Suppose that some yi is related to some w on the left side. Then the left side
also relates w to ui. Therefore, by Lemma 36, so does the right side. But the
right side also relates yi to vi. Therefore, it relates vi to ui. Hence, π2ũ = π2ṽ
up to Eq(P ′), and Eq(P ′) = Eq(Q′).

The previous results satisfy the definition of structural congruence on con-
cretions (Definition 11): (z̃)(ṽ : Q′) ≡ (x̃)(ũ : Q′σ) for σ = {x̃/̃z}. Hence,
Q

u−→ (x̃)(ũ : Q′σ).
We now need to show that P ′ S Q′σ. We know that P ′′ S Q′′. Writing this

out in full, and alpha-renaming the concretion with Q′,

(x̃)(ỹ ũ | w1 w2 | P ′) S (x̃)(ỹ ũ | w1 w2 | Q′σ). (8)

We will use the fact that each ỹ, w1, w2 is distinct and fresh, and can therefore
all be removed without loss of information. To achieve this, first note that S
is by definition closed with respect to contexts. Also recall that π1ũ contains
those names in ũ that are bound by x̃, and that π2ũ contains those names that
are not. Now construct a context (ỹw1w2)(π1ỹ π1ũ |), and apply it to both
sides of Equation 8. Applying it to the left side yields the following.

(ỹw1w2)
(
π1ỹ π1ũ | (x̃)(ỹ ũ | w1 w2 | P ′)

)
≡ (ỹ)

(
π1ỹ π1ũ | (x̃)(ỹ ũ | P ′)

)
remove w1, w2

≡ (ỹ)
(
π1ỹ π1ũ | π2ỹ π2ũ | (x̃)(π1ỹ π1ũ | P ′)

)
partition ỹ ũ

≡ (ỹ)
(
π1ỹ π1ũ | π2ỹ π2ũ | P ′{π1ỹ/π1ũ}

)
substitute, since {x̃}={π1ũ}

≡ (π2ỹ)
(
π2ỹ π2ũ | P ′) partition (ỹ) and subst. back

≡ P ′ since ỹ not in P ′

Similarly, applying the context to the right hand side yields Q′σ. From Equa-
tion 8 we get

P ′ S Q′σ

as desired. Therefore, the largest barbed congruence is a ground bisimulation.
2

Conclusions. This concludes our study of strong bisimulation for the explicit
fusion calculus. We have seen that barbed congruence and ground congruence
coincide in the strong case. We have also found an efficient characterisation for
them.

Barbed congruence is an easy way to compare different calculi. In the fol-
lowing chapter we use it to relate the explicit fusion calculus to the pi calculus,
and in Chapter 6 we use it to prove the fusion machine correct. The efficient
bisimulation is a more useful proof technique for comparing one program to
another: it is a sound and complete way to practically judge whether a given
relation is a bisimulation congruence.

Before going on to Chapter 4, we consider weak bisimulation. Our results
for weak bisimulation are incomplete. However, the rest of the dissertation does
not depend on them.

CHAPTER 3. BISIMULATION 52

3.9 Weak bisimulation

In weak bisimulation, we do not count the number of internal steps. This has
a practical motivation: it lets us treat programs as ‘black boxes’, ignoring their
internal working, observing only the commitments they can make.

However, it is harder to work with weak bisimulation than strong bisim-
ulation, and there are pitfalls. Parrow and Victor proposed a congruence called
weak hyper-equivalence for the fusion calculus [53], and claimed that that it is
equal to weak barbed congruence. But Fu proved [23] that the two relations
are in fact different. He has subsequently discovered [24] that, in the presence
of mismatch, weak hyper-equivalence is not even a behavioural equivalence.
However, the work of Fu and Parrow and Victor was done in the finite sub-
calculus—i.e. without the replication operator. We outline some properties of
the full calculus, including replication.

It is possible to write a program which, through a number of internal steps,
exchanges two names. In this sense (up to weak bisimulation) the program is
like an explicit fusion. The simplest such program is an equator, first introduced
by Honda and Yoshida [31]:

E(u, v) = !u(x̃).vx̃ | !v(x̃).ux̃

Here is an example execution of the equator:

E(u, v) | uw̃ | vz̃
≡ E(u, v) | u(x̃).vx̃ | uw̃ | vz̃
−→ E(u, v) | vw̃ | vz̃
−→ E(u, v) | w̃ z̃

As in this example, any rendezvous on u can be converted into one on v. There-
fore, in the presence of something that interchanges names, the programs uw̃
and uz̃ are equivalent. So too are xu and xv. However, the labelled transitions
we used for strong ground bisimulation would judge these last two inequivalent,
since they evolve to unequal interfaces:

E(u, v) | xv x−→ v : E(u, v)

E(u, v) | xu x−→ u : E(u, v)

This means that we cannot use ground bisimulation for the weak case. We shall
use barbed bisimulation

·
≈b instead, since it seems a natural definition and since

it does not suffer from the same problem (it does not use interfaces). Write τ−→
∗

for a sequence of zero or more τ−→ transitions.

Definition 39 (Weak) A weak barbed bisimulation is a symmetric relation S
such that P S Q implies

• if P
µ−→ then Q

τ−→
∗ µ−→, and

• if P τ−→ P ′ then there exists a Q′ such that Q τ−→
∗
Q′ and P ′ S Q′

It is also a weak barbed congruence when P S Q implies

CHAPTER 3. BISIMULATION 53

• for all contexts E, E[P] S E[Q].

The largest weak barbed bisimulation
·
≈b exists and is an equivalence. So too

does the largest weak barbed congruence ≈b.
The remainder of this section is dedicated to a proof about equators: namely,

that E(u, v) is weakly bisimilar to E(u, v) | u v. We conjecture that in fact they
are also barbed congruent. The significance of this conjecture would be that the
inside-outside theorem (Theorem 18), key to relating strong ground and barbed
congruence, fails in the weak case.

Since we will be using the equator E(u, v) and the substitution {u/v} fre-
quently, we abbreviate them in this section to just E and σ. We first call to
attention some relevant aspects of equators. Equators act as buffers, storing for
a time the data that was sent, and also losing information as to the order in
which it was sent. Thus, in

E | ux.uy.P | v(a).v(b).Q τ−→ τ−→ E | vx | vy | P | v(a).v(b).Q,

the names x and y might be delivered in any order. By contrast, with an explicit
fusion, the order is fixed:

u v | ux.uy.P | v(a).v(b).Q τ−→ τ−→ u v | P | Q{x/a}{y/b}.

Note also that, up to weak bisimulation, there is no effective difference be-
tween storing data in a u buffer or a v buffer: they can be interchanged, as
shown below.

E | ux τ−→ E | vx.

Although the propositions in this section concern barbed bisimulation (with-
out interfaces), we nevertheless find it convenient to use interfaces in their proofs.
We will use the abbreviations

P
µ

=⇒ I : P ′ for P τ−→
∗ µ−→ J : P ′′, P ′′ τ−→

∗
P ′, and J : P ′ ≡ I : P ′

P
τ=⇒ P ′ for P τ−→

∗
P ′.

First, a minor lemma. It echoes Lemma 14 (page 36) for explicit fusions.

Lemma 40 If E | P λ−→e P
′ then there exists a P ′′ such that P ′ ≡ E | P ′′.

Proof. A rule induction on the derivation of the transition. 2

Proposition 41 E(u, v) | P
·
≈b E(u, v) | P{u/v}.

Proof. The proof of the proposition is substantial. In essence, it is just a large
case analysis to construct the labelled transition graph of E(u, v) | P and that
of E(u, v) | P{u/v}, and showing that the graphs are the same up to weak
bisimulation.

For the proof of the proposition, we will use structural induction on terms
in the explicit fusion calculus. As always, the task is to find a good induction
hypothesis. We will use a variant of ground bisimulation for this purpose, but
modified to ignore the differences in interface. We use this because barbed bi-
simulation is too weak for the parallel case: it cannot give the transitions of P |Q

CHAPTER 3. BISIMULATION 54

merely from those of P and Q separately. Our variant of ground bisimulation
can give the transition of P |Q.

We will construct a relation S= {(E |P, E |Q)} where P andQ are identical up
to u and v. The bulk of the proof is an induction to show that all such P and Q
satisfy a particular property, such that the relation is a barbed congruence. We
call the property renamability. Before defining renamability, we introduce some
notation. Write Pσ = Qσ to mean that P and Q are structurally identical up
to differences in u and v, and assuming alpha renaming. Write (x̃)(ỹ1 : P ′)σ =
(x̃)(ỹ2 : Q′)σ to mean that ỹ1σ = ỹ2σ and P ′σ = Q′σ. Now a term P is
renamable if for every Q such that Pσ = Qσ,

• E | P α=⇒ E | I : P ′ implies E | Q α=⇒ E | J : Q′ with (I : P ′)σ = (J : Q′)σ
and P ′ renamable.

where we assume I does not bind E .
The induction hypothesis allows a reaction P

µ−→ I : P ′ to be matched by
Q

µ
=⇒ I : Q′, where Q may perform several tau transitions after it has made the

commitment µ. We will use these extra tau transitions to relate the transitions
of E | u v to those of E . The following commutative diagrams show this relation,
showing how the transitions of E | u v can be matched by E with a trailing tau.
Note that they cannot be matched without that trailing tau.

E | u v
u -

v
- E | u v | (x)(x : vx)

E | u v | (x)(x : ux)

v

?

u

?

E
u - E | (x)(x : vx)

=�
�

�
�

�
�

�

τ

>

E | (x)(x : ux)

v

?

These trailing tau transitions are purely an internal technique for the proof of
the proposition. But the proposition itself is about barbed bisimulation, which
ignores the results of these transitions.

Before proving that all terms are renamable, we first provide a more conve-
nient characterisation of renamability.

Lemma 42 (Renamability) The following conditions are sufficient for re-
namability:

• P
µ−→ I : P ′ implies E | Q

µ
=⇒ E | J : Q′ where (I : P ′)σ = (J : Q′)σ,

• P
τ−→ P ′ implies E | Q τ=⇒ E | Q′ where P ′σ = Q′σ,

• and each of the above implies P ′ to be renamable.

Proof. Suppose E | P undergoes a α−→ transition. Recall that α ranges over µ
and τ transitions. From Proposition 25, there are four main possibilities as to
what this transition might have been.

1. E | P w−→ E | (x̃)(x̃ : vx̃ | P), with P ` u w. Because Pσ = Qσ, then
either Q ` u w or Q ` v w. In the first case, we can deduce a translation

E | Q u=⇒ E | (x̃)(x̃ : vx̃ | Q)

CHAPTER 3. BISIMULATION 55

from one part of the equator. We can then rename this transition to w.
In the second case, we can deduce a similar transition from the other part
of the equator, and also rename it to w. Both cases satisfy the definition
of renamability.

2. E | P
µ−→ E | I : P ′, with P

µ−→ I : P ′. Renamability follows from the
first condition in the lemma.

3. E | P τ−→ E | P ′, with P
τ−→ P ′. Renamability follows from the second

condition in the lemma.

4. E | P τ−→ E | (ỹ)(vz̃ | P ′), with P
u−→ (ỹ)(z̃ : P ′). From the second

condition in the lemma,

E | Q u=⇒ E | (ỹ)(z̃ : Q′)

where (ỹ)(z̃ : Q′) and (ỹ)(z̃ : P ′) are equivalent up to u v. Now we
compose this with the term u(x̃).vx̃. This allows us to deduce an internal
reaction

u(x̃).vx̃ | E | Q τ=⇒ E | (ỹ)(vz̃ | Q′).

However, u(x̃).vx̃ | E is structurally congruent to E . This yields the desired
result, satisfying renamability:

E | Q τ=⇒ E | (ỹ)(vz̃ | Q′). 2

We now use this lemma in proving that every term is renamable. We do this
by induction. This continues the proof of Proposition 41.

Null, fusion. The terms 0 and φ are renamable, since neither has any tran-
sitions.

Prefix. The term µỹ.P is renamable, as follows. The possibilities are that µ
is u, v, u, v or some w 6∈ {u, v}. We will consider all µ1ỹ1.P1 which are identical
to µỹ.P up to u and v.

1. Suppose µ = u. Then either µ1 = u, in which case µ1ỹ1.P1 undergoes the
required u−→ transition immediately. Or µ1 = v. In this case, the equator
can make the v−→ commitment and then perform a tau step to update the
resulting buffer:

E | vỹ1.P1
u−→ E | (x̃)(x̃ : vx̃ | vỹ1.P1)
τ−→ E | ỹ1 : P1

The mirror case where µ = v is similar.

2. Suppose µ = u. Then either µ1 = u, in which case µ1ỹ1.P1 undergoes
the required u−→ transition immediately. Or µ1 = v. In this case, µ1 can
make an internal reaction with the equator first, and then commit on u−→:

E | vỹ1.P1
τ−→ E | uỹ1 | P1

u−→ E | yy1 : P1

The mirror case where µ = u is similar.

CHAPTER 3. BISIMULATION 56

3. Suppose µ 6∈ {u, v, u, v}. Then µ1 = µ, and so µ1ỹ1.P1 undergoes the
required

µ−→ transition immediately.

Restriction. If P is renamable, then so is (z)P , as follows. Suppose (z)P
µ−→

C. Then by Proposition 25, there exists I and P ′ such that C = (z)(I : P ′)
and P

µ−→ I : P ′ with z 6∈ µ. By the induction hypothesis, E | Q
µ

=⇒ E | J : Q′

for any Q equal to P up to u and v, such that I : P ′ and J : Q′ are also
equal. Assume by alpha-renaming that z 6∈ {u, v}. We can directly deduce
E | (z)Q

µ
=⇒ E | (z)J : Q′.

Parallel. If P and Q are renamable, then so is P | Q, as follows. We use
Proposition 25 to analyse the possible transitions of P | Q.

1. The first case is that P | Q undergoes a
µ′

−→ transition, which originates
either from P or Q. Suppose P : that is,

P
µ−→ I : P ′ and P |Q ` µ′ = µ,

yielding P | Q µ−→ I : P ′ | Q.

We will prove that E | P1 | Q1
µ′

=⇒ E | J : P ′
1 | Q1 for any P1 | Q1 equal to

P | Q up to u and v. Because it is so equal, Eq(u v | P | Q) = Eq(u v |
P1 | Q1). Therefore either P1|Q1 ` µ µ′ or (supposing µ to be an input)
P1|Q1 ` µ u, v µ′, or some equivalent symmetrical case.

Now from the induction hypothesis, E | P1
µ

=⇒ E | J : P ′
1. Therefore

E | P1 | Q1
µ

=⇒ E | J : P ′
1 | Q1. In the case where P1|Q1 ` µ µ′, we can

transform this directly into

E | P1 | Q1
µ′

=⇒ E | J : P ′
1 | Q1

as desired. Otherwise, it depends on whether µ is an input or an output
commitment.

If µ is an input, we will add a term v(x̃).ux̃ which can perform a v−→
transition. In the presence of P1|Q1 we can rename v to µ′. Supposing
that J = (ỹ)(z̃ :) we get

v(x̃).ux̃ | E | P1 | Q1
µ′

−→ (x̃)(x̃ : ux̃ | E | P1 | Q1). (9)

We are given that P1|Q1 ` u µ. Now the buffer can do an output on u,
and the term E | P1 | Q1 can do an input on µ, so the two can react:

ux̃ | E | P1 | Q1
τ=⇒ E | (ỹ)(z̃ x̃ | P ′

1 | Q1). (10)

Using Equation 10 as a sequence of tau steps at the end of Equation 9 we
get the desired result:

v(x̃).ux̃ | E | P1 | Q1
µ′

=⇒ (x̃)(x̃ : E | (ỹ)(z̃ x̃ | P1 | Q1))
≡ E | (ỹ)(z̃ : P ′

1 | Q1).

CHAPTER 3. BISIMULATION 57

If µ is an output, we have the reverse situation. Compose the term u(x̃).vx̃.
Because P1|Q1 ` u µ, there can be an internal τ=⇒ transition, leaving a
buffer vx̃. Now rename this buffer to µ′ x̃, and the result can do the
appropriate µ′ output transition.

2. The second parallel case is that P | Q undergoes an internal reaction due
to either P or Q alone. By the induction hypothesis, either E | P1 or
E | Q1 does as well.

3. The final parallel case is that P | Q undergoes an internal reaction due to
an output from one and an input from the other. We consider the case of

P
x−→ I : P ′, Q

y−→ J : Q′,

P |Q ` x y

yielding P | Q τ−→ I@J [P ′ | Q′]. By the induction hypothesis,

E | P1
x=⇒ E | I1 : P ′

1, E | Q1
y

=⇒ E | J1 : Q′
1,

either P1|Q1 ` x y or P1|Q1 ` x u, v y

If the first case is true, then we get

E | E | P1 | Q1
τ=⇒ E | E | I1@J1[P ′

1 | Q′
1].

Now any derivation E | R α=⇒ E | R′ must be finite. It can therefore have
used only a finite number of copies of the equator. Therefore there exist
terms E and E′, each finite copies, such that E | R α=⇒ E′ | R′. Moreover,
E ≡ E | E ≡ E′ | E . Applying this general principle to the equation, we
get

E | P1 | Q1
τ=⇒ E | I1@J1[P ′

1 | Q′
1]

as desired. Finally, I1 and J1 are related to I and J through σ, and so
I1@J1[P ′

1 | Q′
1] and I@J [P ′ | Q′] are equal up to u and v.

If the second case is true, then we must use an instance of the equator.
Let φ be Eq(Q1) and ψ be Eq(P1). Then, from the induction hypothesis,
and assuming I1 = (ỹ)(z̃ :), we make the following chain of deductions:

E | P1 | φ
x=⇒ E | I1 : P ′

1 | φ from induction hypothesis

E | P1 | φ
u=⇒ E | I1 : P ′

1 | φ since x = u

u(x̃).vx̃ | E | P1 | φ
u=⇒ E | (ỹ)(vz̃ | P ′

1 | φ) composition instance of E

E | P1 | φ
u=⇒ E | (ỹ)(vz̃ | P ′

1 | φ) use ≡ to remove duplicate

Also from the induction hypothesis, and renaming the label of the tran-
sition, E | ψ | Q1

v=⇒ E | ψ | J1 : Q′
1. Reacting the two together, and

removing the second copy of the equator as before,

E | P1 | Q1 | φ | ψ
τ=⇒ E | I1@J1[P ′

1 | Q′
1 | φ | ψ].

And since φ and ψ are merely some explicit fusions already contained in
the term, we can get rid of them:

E | P1 | Q1
τ=⇒ E | I1@J1[P ′

1 | Q′
1].

CHAPTER 3. BISIMULATION 58

Replication If P is renamable, then so is !P . This case is almost identical to
the parallel case.

This concludes the proof that all terms P are renamable. We can now
conclude the proof of Proposition 41. Consider the relation S= {(E |P, E |Q)}
where P and Q are identical up to u and v. Since barbed bisimulation is a special
case of renamability, and all P , Q are renamable, S is a barbed bisimulation. 2

Corollary 43 E
·
≈b E | u v.

Conjecture 44 E(u, v) ≈b u v | E(u, v).

The impact of this conjecture is that would demonstrate two terms that are
congruent even though they have different explicit fusions. Such a situation is
not possible in the strong case (Theorem 18). Therefore, in the strong case,
we can syntactically determine whether two names are interchangeable (i.e.
whether P ∼b P | u v). But if the conjecture holds, then such a syntactic de-
termination is not possible in the weak case. For consider a modified equator
!u(x).H.vx | !v(x).ux, where H encodes one of the standard undecidable prob-
lems in computer science. Either H terminates, making this program behave
like an equator. Or H does not terminate, and u and v are not interchangeable.
Now if we had some characterisation of which names are interchangeable, then
we could decide whether H terminates. Therefore, such a characterisation is
impossible. Without such a characterisation, there is no way to define weak
ground labels in such a way as to make weak ground congruence coincide with
weak barbed congruence.

We have shown (Proposition 41) that equators allow names to be inter-
changed in all parallel contexts. As discussed above, it remains to seen whether
they allow interchange in all contexts.

Chapter 4

Embedding into explicit
fusions

The fusion calculus and the pi calculus embed naturally into the explicit fusion
calculus. This chapter proves that their embeddings are correct. For each
calculus, I first recall its own definition of bisimulation, and then establish the
connection between this and bisimulation for the explicit fusion calculus. The
plan of the chapter is as follows.

4.1 Overview. We explain what an embedding is, and what it means for an
embedding to be correct.

4.2 The fusion calculus. We recall the fusion calculus [52] and its definition of
hyper-equivalence (the name for its version of bisimulation). The fusion
calculus uses a different style of labelled transitions.

4.3 Embedding the fusion calculus. Consider two terms in the fusion calculus.
They are hyper-equivalent in the fusion calculus if and only if they are
congruent in the explicit fusion calculus: the embedding is sound and
complete (‘fully abstract’).

4.4 The pi calculus. We recall the pi calculus and its definition of barbed
bisimulation.

4.5 Embedding the pi calculus. Consider pi calculus contexts translated into
the explicit fusion calculus. If two pi programs are barbed bisimilar in all
pi contexts, then their translations are barbed bisimilar in all translated
contexts: the embedding is sound.

4.1 Overview

This chapter concerns embeddings from one calculus into another. We now state
mathematically what it means for an embedding to be correct. We then explain
and motivate this statement with an analogy.

A calculus X has a set PX of terms and an equivalence relation ∼X over
terms. An embedding from one calculus X into another Y is a translation (·)∗ :

59

CHAPTER 4. EMBEDDING 60

PX 7→ PY . An embedding might have several properties, described below. Let
PX range over PX .

• A sound embedding is one where PX ∼X QX implies P ∗
X ∼Y Q∗

X .

• A complete embedding is one where P ∗
X ∼Y Q∗

X implies PX ∼X QX .

• A fully abstract embedding is one that is both sound and complete.

As we have seen, there are actually a collection of different equivalences ∼X for
each calculus. Rather than just talking about an embedding of X into Y , we
should strictly talk about an embedding of X with some particular ∼X into Y
with some particular ∼Y .

Since our calculi are all concurrent calculi, and they all have similar defini-
tions of equivalence, we often like to find that more properties are preserved by
embedding. Suppose that our calculus X has a parallel composition operator
|X : PX × PX 7→ PX , a transition relation −→X⊆ PX × PX , an observation
relation ·−→X⊆ PX × (N ∪ N), and a set of contexts EX : PX 7→ PX . We are
interested in the following properties.

• A compositional embedding is one where the translation of a term is de-
fined with respect to its sub-terms: for example, (PX |X QX)∗ = P ∗

X |Y
Q∗
X .

• We say that reaction is preserved when PX −→X QX implies P ∗
X −→Y

Q∗
X , and also P ∗

X −→Y QY implies ∃QX : QY = Q∗
X ⇒ PX −→X QX .

We say that reaction is strongly preserved when it is preserved, and also
P ∗
X −→Y QY implies ∃QX : QY = Q∗

X ∧ PX −→ QX .

• If observations are strongly preserved (PX
µ−→X⇔ P ∗

X

µ−→Y) and reac-
tion is strongly preserved, then the embedding itself has the properties
of a barbed bisimulation. (We cannot actually say that the embedding
is a bisimulation, because bisimulation was only defined within a single
calculus X to be a subset of PX × PX , and the embedding is a subset
of PX × PY .) Note that if the embedding has the properties of a barbed
bisimulation, then it also preserves barbed bisimulation.

• An embedding is sound with respect to the contexts E ′
Y ⊆ EY , when ∀EX :

EX [PX] ∼X EX [QX] implies ∀EY ∈ E ′
Y : EY [P ∗

X] ∼X EY [Q∗
X]. Similarly,

an embedding can be complete and fully abstract with respect to contexts
E ′
Y .

To understand what the correctness properties mean, and which ones are im-
portant, I find it helpful to think of a story from Simak’s science fiction novel
City [65]. Humans have reached Mars, but the environment there is too inhos-
pitable. They build a machine to transmogrify themselves into better-adapted
martian creatures. In martian form they lose some of their human senses, and
they acquire new martian senses. In our analogy, humans are terms in calculus
X, martians are terms in calculus Y, their sensible attributes are observation
and reaction, and transmogrification is translation.

Soundness with respect to translated contexts. The first important property is
that indistinguishability is retained by transmogrification, from the perspective

CHAPTER 4. EMBEDDING 61

of other transmogrified people. Thus, if no humans could tell a particular pair of
human twins apart, then no transmogrified humans can tell the transmogrified
twins apart either. In the context of an implementation this is an important
practical property. If humans are programs in a language, and martians are their
implementation, then this property means that two library routines deemed
equivalent by the language specification will also be equivalent when executed
(so long as all other executing programs are also written in that language). In
the context of the pi calculus we prove that if two programs are barbed bisimilar
in all pi contexts, then their translations into the explicit fusion context will also
be barbed bisimilar in all ‘piable’ explicit fusion contexts. (Piability identifies
the image of pi contexts under translation.)

Full abstraction. The second important property is whether all martians
(both native martians and humans after transmogrification) are as discriminat-
ing as native humans. If everyone on Mars perceives the same similarities and
differences in people as all humans do, then the social structures in martian
society will be exactly the same as those on Earth. In the context of the fusion
calculus, we prove that the structure of hyper-equivalence in the fusion calculus
is the same as the structure of congruence in the explicit fusion calculus. In the
context of the fusion machine, we prove that machine-equivalence is the same
as shallow barbed congruence in the explicit fusion calculus.

Embedding has properties of barbed bisimulation. The third property, for the
special case where humans and martians have the same sensory apparatus, is
that transmogrification does not alter any of an object’s sensible attributes. This
means that a human will appear the same after transmogrification as before: no
one else, neither human nor martian, can tell them apart. This is a practically
useful property for programmers: it means that when they inspect how their
program runs at the machine level (martian), they will find that it uses the
same messages and names as they programmed into it at the calculus level
(human). We also prove this property for our fragmentation: a fragmented
term is observationally indistinguishable from its original.

4.2 The fusion calculus recalled

This section is a brief summary of the fusion calculus and its bisimulation. It
largely restates existing work of Victor and Parrow [52, 69]. This is in prepara-
tion for the following section, which proves full abstraction between the fusion
calculus and the explicit fusion calculus.

The fusion calculus has a very different labelled transition system from the
explicit fusion calculus. This section therefore goes into some depth explaining
the fusion transition system, and provides lemmas relating it to the explicit
fusion transition system. It is instructive to compare the definition of fusion
transitions (Definition 47, page 63) with that of explicit fusion transitions (Def-
inition 13, page 35), and also fusion reaction (Definition 46, page 62) with ex-
plicit fusion reaction (Definition 4, page 24). Explicit fusions lead to a simpler
presentation of both.

It is interesting that, despite their very different labelled transition systems
and definitions of bisimulation, the fusion calculus and the explicit fusion cal-
culus should have exactly the same bisimulation congruence. This leads us to
suspect that the bisimulation congruence is a natural one for these calculi. Note

CHAPTER 4. EMBEDDING 62

that although the calculi have the same congruence, there remains an important
difference between them: the fusion calculus has a non-local reaction relation
making it awkward to implement, while the explicit fusion calculus has an easier
local reaction relation.

Definition 45 (Fusion calculus) The set Pfu of fusion terms is given by

P ::= 0
∣∣ P |P

∣∣ !P
∣∣ (x)P

∣∣ ux̃.P
∣∣ ux̃.P.

The structural congruence between terms, ≡, is as for the explicit fusion calculus
(Definition 3, page 23), but without the rules for fusion interchange.

Definition 46 (Fusion reaction) The reaction relation −→fu is the smallest
relation satisfying the following rule, and closed with respect to ≡,

(z̃)(ux̃.P | uỹ.Q | R) −→fu Pσ | Qσ | Rσ,

where σ is a substitution satisfying the following properties: ran(σ),dom(σ) ⊆
{x̃, ỹ}; z̃ = dom(σ)\ ran(σ); and σ(v) = σ(w) iff (v, w) ∈ Eq(x̃ ỹ), where
Eq(x̃ ỹ) is the smallest equivalence relation containing each (xi, yi).

This definition can perhaps be explained more easily through its connection to
the explicit fusion calculus:

• If P −→ Q in the explicit fusion calculus, and neither P nor Q contain
any explicit fusions, then P −→fu Q in the fusion calculus.

• If P −→fu Q, then P −→ Q.

This connection is just a special case of full abstraction, proved in the following
section.

We now move to the transition relation in the fusion calculus. We will define
the labels and the transition first, and then explain them. Recall that µ ranges
over N ∪N . Let δ range over non-binding labels {µx̃, !x̃ ỹ}, and let ε range over
possibly binding labels {δ, (ỹ)µx̃} where ỹ ⊆ x̃ and µ 6∈ ỹ. The free and bound
names of the various labels are given by

fn(u) = u

fn(u) = u

fn(µx̃) = fn(µ) ∪ {x̃}
fn(!x̃ ỹ) = {u : ∃v : (u, v) ∈ Eq(x̃ ỹ), u 6= v}

fn((ỹ)ux̃) = {x̃u}\ỹ
fn((ỹ)ux̃) = {x̃u}\ỹ
bn((ỹ)µx̃) = {ỹ}

Note that the free names of a fusion label are all those names that are fused not
only to themselves. This is different from the explicit fusion calculus, where the
the name u is free in u u. This is not a significant difference—just an awkward
one.

CHAPTER 4. EMBEDDING 63

Definition 47 (Fusion transitions) The labelled transition system for the fu-
sion calculus, P ε−→fu P

′, is given by

ux̃.P
ux̃−→fu P ux̃.P

ux̃−→fu P

P
ux̃−→fu P

′ Q
uỹ−→fu Q

′

P | Q !x̃ ỹ−→fu P ′ | Q′

P
δ−→fu P

′

P | Q δ−→fu P ′ | Q

P
δ−→fu P

′ x 6∈ fn(δ)

(x)P δ−→fu (x)P ′

P
!x̃ ỹ−→fu P

′ (u, v) ∈ Eq(x̃ ỹ) u 6= v

(u)P
!x̃ ỹ\u−→ fu P ′{v/u}

P1 ≡ P
δ−→fu Q ≡ Q1

P1
δ−→fu Q1

P
(ỹ)µz̃−→ fu P

′ x ∈ z̃ − ỹ x 6∈ µ

(x)P
(xỹ)µz̃−→ fu P ′

We briefly explain the labelled transition system. The fusion calculus uses a
‘tell’ fusion transition to indicate that an internal reaction has caused a fusion:
for example,

ux.P | uy.Q !x y−→fu P | Q.

This fusion has its fusing effect during reaction, if a reaction ends up being al-
lowed. It has potentially global effect, up to some delimiting restriction. There-
fore the transition can only be discharged in the presence of that restriction:

ux.P | uy.Q | R !x y−→fu P | Q | R
(x)(ux.P | uy.Q | R) τ−→fu (P | Q | R){y/x}

We sometimes write P
!φ−→ fuP ′ to indicate that the transition causes a fusion,

but without having to specify which names are fused. The identity fusion tran-
sition P !I−→fu P

′ has no fusing effect, and is equivalent to the conventional tau
transition.

Recall that the reaction relation in the fusion calculus only allows reaction
if all fusion have been discharged through restriction. In effect, the ‘tell’ fusion
label indicates that there is a potential reaction, but only if enough restric-
tions are present to remove fusions. This makes an interesting parallel with the
‘ask’ fusion label in the explicit fusion calculus: this label indicates a potential
reaction, but only if enough explicit fusions are provided (Section 3.6).

The fusion calculus distinguishes between possibly binding labels ε and non-
binding labels δ. Note that the rules for output, input, parallel composition and
structural congruence apply only to non-binding labels. To deduce a binding

labelled transition P | (x)ux.Q
(x)ux−→ fu P | Q it is necessary to first move the

restriction to the outside using scope-extrusion, then deduce a transition from
the contents P | ux.Q, and finally re-apply the restriction. This procedure is
used in Lemma 50 to deduce some derived transition rules that are closer in
spirit to those of the explicit fusion calculus.

In order to describe a behavioural congruence, the fusion calculus uses the
notion of a substitutive effect of a fusion label. This effect is a substitution that

CHAPTER 4. EMBEDDING 64

sends all members of each equivalence class to one representative of the class.
The substitutive effect of all other labels is just the identity substitution.

Definition 48 (Substitutive effect) A substitution σ agrees with the fusion
φ if ∀x, y. (x, y) ∈ φ ⇔ σ(x)=σ(y). A substitutive effect of a fusion φ is a
substitution σ agreeing with φ such that ∀x, y. σ(x)=y ⇒ xφy.

Definition 49 (Hyper-equivalence) A hyper bisimulation is a symmetric re-
lation S such that whenever P S Q, then for all substitutions σ

• if Pσ ε−→ P ′ with bn(ε) ∩ fn(Qσ) = ∅ then Qσ
λ−→ Q′ and P ′ρ S Q′ρ,

for some substitutive effect ρ of ε.

Two terms P and Q are hyper-equivalent, written P ∼fu Q, if and only if
there exists a hyper-bisimulation between them. The relation ∼fu is the largest
hyper-bisimulation.

Note that the original fusion calculus paper defines bisimulation and hyper-
equivalence separately, while my restatement has combined them for conve-
nience.

In the following lemma I deduce some derived transition rules for the fusion
calculus. These derived transitions are closer in spirit to those of the explicit
fusion calculus. In particular, they give closure properties for binding labels
(ỹ)µx̃; Definition 47 only gives closure properties for non-binding labels µx̃. We
give this lemma in preparation for the following section, where it is used to
prove the connection between fusion labels and explicit fusion labels.

Lemma 50

1. P
(ỹ)µx̃−→ fu P

′ implies (z)P
(ỹ)µx̃−→ fu (z)P ′ if z 6∈ {µ, x̃, ỹ}.

2. P
(ỹ)µx̃−→ fu P

′ implies P | Q (ỹ)µx̃−→ fu P
′ | Q assuming ỹ 6∈ fn(Q).

3. P
(ỹ)µx̃−→ fu P

′ implies !P
(ỹ)µx̃−→ fu P

′ | !P assuming ỹ 6∈ fn(!P).

4. P
(ỹ1)µx̃1−→ fu P

′ and Q
(ỹ2)µx̃2−→ fu Q

′ imply P | Q !(x̃1 x̃2)\ỹa−→ fu (ỹb)(P ′σ | Q′σ),
with the following side-conditions. The names ỹa and ỹb are distinct and
partition {ỹ1, ỹ2}. Each name in ỹa is fused with an element not in ỹa
through the fusion x̃1 x̃2, and σ substitutes each element in ỹa accordingly.
The names ỹb are not affected by the fusion (x̃1 x̃2)\ỹa. We assume no
clashes: ỹ1 and ỹ2 are distinct, and {ỹ1} ∩ fn(Q) = {ỹ2} ∩ fn(P) = ∅.

The final derived rule is awkward to state formally. Essentially, as many of the
binders ỹ1, ỹ2 as possible are removed by interchanging them with other names
from the fusion x̃1 x̃2: these constitute ỹa. And ỹb contains those names that
cannot be removed.

4.3 Full abstraction for fusion calculus

We now prove that the explicit fusion calculus is a fully abstract model of the
fusion calculus, with respect to strong congruence. We have already discussed

CHAPTER 4. EMBEDDING 65

the significance of this result: it reassures us that we have identified the ‘correct’
congruence, and allows us to use the simpler definitions of equivalence defined in
the explicit fusion calculus, rather than those defined in the fusion calculus. In
effect, the fusion calculus can be subsumed within the explicit fusion calculus.

It is awkward to prove full abstraction for the fusion calculus using barbed
congruence. This is because the fusion calculus and the explicit fusion calculus
have different reaction relations. Instead, we will relate hyper-equivalence in the
fusion calculus to ground bisimulation congruence in the explicit fusion calculus.
A connection between barbed congruence in the two calculi follows directly: we
have shown in Chapter 3 that ground congruence is equal to barbed congruence
in the explicit fusion calculus, and meanwhile Victor and Parrow have shown [70]
that hyper-equivalence is equal to barbed congruence in the fusion calculus.

First, a remark about notation. The set Pfu of terms in the fusion calculus is
a subset of the terms Pφ in the explicit fusion calculus. When we write a fusion
transition P

ε−→fu P
′ it is apparent that both P and P ′ are in Pfu. When we

write an explicit fusion transition, we will use a term with an asterisk P ∗ to
range over terms in Pfu, and P to range over all of Pφ.

We now consider the connection between labels in the fusion calculus (Def-
inition 47, page 63) and labels in the explicit fusion calculus (Definition 13,
page 35). The fusion calculus labels are different in two ways. First, the ‘tell’

transition P
!x y−→fu P

′ of the fusion calculus tells the environment that, if reac-
tion is allowed, then it will cause a fusion. In contrast, the ‘ask’ fusion transition
P

?x y−→ P ′ of the explicit fusion calculus asks for an explicit fusion to be present
in order to allow reaction. Second, the fusion calculus carries the data to be
communicated in the label P ux−→fu P

′; the explicit fusion calculus carries it in
a concretion P u−→ x : P ′.

Despite these differences, there is a straightforward connection between the
two labelled transition systems: apart from the channel name itself, all other
information conveyed in a fusion calculus label (including the ‘tell’ fusion label)
is conveyed in the explicit fusion calculus by the interface and explicit fusions
of the resulting concretion; and the ‘ask’ fusion labels in the explicit fusion
calculus are not actually needed—they are merely present as a convenience, to
allow an efficient characterisation (Section 3.5), and can be deduced from the
other labels. The connection between the labels, stated formally in the following
lemma, is illustrated in the table below:

Fusion calculus Explicit fusion calculus

ux.P
ux−→fu P . . . ux.P ∗ u−→e x : P ∗

(x)ux.P
(x)ux−→ fu P . . . (x)ux.P ∗ u−→e (x)(x : P ∗)

ux.P | uy.Q !x y−→fu P | Q . . . ux.P ∗ | uy.Q∗ τ−→e x y | P ∗ | Q∗

Lemma 51 Let P be a term in Pfu. Then P ∗ has no explicit fusions. Further-
more,

1. if P undergoes a transition in the fusion calculus, the transition is one of

(a) P
(ỹ)ux̃−→ fu P

′ such that P ∗ u−→e (ỹ)(x̃ : P ′∗), or similarly for
(ỹ)ux̃−→ fu

CHAPTER 4. EMBEDDING 66

(b) P
!φ−→fu P

′ such that P ∗ τ−→e φ | P ′∗;

2. if P ∗ undergoes a transition in the explicit fusion calculus, it is one of

(a) P ∗ u−→e≡ (ỹ)(x̃ : P ′∗
1) such that P

(ỹ)ux̃−→ fu P
′
1, or similarly for u−→e

(b) P ∗ ?x y−→e≡ φ | P ′∗
1 such that ∃P ′

2. P{y/x}
!φ−→fu P

′
2, and x y | φ | P ′∗

1 ≡
x y | φ | P ′∗

2

(c) P ∗ τ−→e≡ φ | P ′∗
1 such that ∃P ′

2. P
!φ−→fu P

′
2, and φ | P ′∗

1 ≡ φ | P ′∗
2 .

Proof. The fact that P ∗ has no explicit fusions follows from the definition of
(·)∗. Part 1 of the lemma is proved by induction on the derivation of the
transition ε−→fu. Part 2 is proved by induction on the structure of P (which is
also the structure of P ∗) using Lemma 50. Part 2b looks complicated because

the explicit fusion φ in P
?x y−→e φ | P ′∗

1 can have immediate effect on P ′∗
1 , but

the fusion label φ in the transition P
!φ−→fu P

′
2 only has effect after the process

has been enclosed by a restriction. 2

We now prove the connection between hyper-equivalence in the fusion calcu-
lus, and efficient bisimulation in the explicit fusion calculus. In essence, given a
hyper-equivalence that relates P to Q, the corresponding efficient bisimulation
will relate φ|P to φ|Q for all explicit fusions φ.

There are two interesting parts to the proof. The first is our reconstruction of
an ‘ask’ fusion transition in the explicit fusion calculus, from a tau transition in
the fusion calculus. This reconstruction illustrates the point made above—that
‘ask’ transitions are not fundamental, but merely a convenience to avoid having
to quantify over all contexts. The second is our reconstruction of a ‘tell’ fusion
transition from a tau transition in the explicit fusion calculus. This illustrates
another point made above—that in the fusion calculus the labels carry the data,
but in the explicit fusion calculus this data is carried in the interface and explicit
fusions of the resulting term.

Theorem 52 P ∼fu Q if and only if P ∗ e∼g Q∗.

Proof. In the forwards direction, we construct a relation S on explicit fusion
terms such that P S Q iff P ≡ (x̃)(φ | P ∗

1) and Q ≡ (x̃)(φ | Q∗
1) such that

P1 ∼fu Q1. We prove that S is an efficient congruence. Clearly the explicit
fusions match. As for the transitions, Proposition 25 says that any transition
of (x̃)(φ|Q∗

1) must have been deduced from a corresponding transition of φ|Q∗
1.

Therefore we consider the transitions of P S Q such that P ≡ φ | P ∗
1 , Q ≡ φ | Q∗

1

and P1 ∼fu Q1. Since P ∗
1 and Q∗

1 have no explicit fusions, it follows that
Eq(P) = Eq(Q). This leaves two parts of efficient congruence definition 21 to
satisfy. We will use Lemmas 51 and 25 to characterise their possible transitions.

1. First consider the transition

φ | P ∗
1 ≡ P

u−→e≡ I : P ′ with P ∗
1

v−→e I : P ′∗
1 , P

′ ≡ φ | P ′∗
1 , φ ` u v,

where I = (x̃)(ỹ :) and x̃ does not bind φ. Then P1
(x̃)vỹ−→ fu P

′
1. Since

P1 ∼fu Q1, we obtain Q1
(x̃)vỹ−→ fu Q′

1 with P ′
1 ∼fu Q′

1. By Lemma 51,

CHAPTER 4. EMBEDDING 67

Q∗
1

v−→e I : Q′∗
1 and hence φ | Q∗

1
u−→πF

I : (φ | Q′∗
1). Finally, φ | P ′∗

1 S
φ | Q′∗

1 by construction of S. An analogous result holds for the input case.

2. Now consider the transition

φ | P ∗
1 ≡ P

?x y−→e P
′ with P ∗

1
?u v−→e ψ|P ′∗

1 , P
′ ≡ φ|ψ|P ′∗

1 , φ ` uv xy.

Given the transition P ∗
1

?u v−→e ψ | P ′∗
1 we need to reconstruct the fact that

Q∗
1 can undergo a τ -transition: writing ρ for a substitutive effect of ψ,

P ∗
1

?u v−→e ψ|P ′∗
1 ⇒ ∃P ′

2. P1{u/v}
!ψ−→fu P

′
2 with u v|ψ|P ′∗

1 ≡ u v|ψ|P ′∗
2

⇒ Q1{u/v}
!ψ−→fu Q

′
2 with P ′

2ρ ∼fu Q
′
2ρ

⇒ Q∗
1{u/v}

τ−→e ψ | Q′∗
2 with (P ′

2ρ)
∗ S (Q′

2ρ)
∗

⇒ u v | φ | Q∗
1

τ−→e u v | φ | ψ | Q′∗
2

Finally, P ′
2ρ

∗ S Q′
2ρ

∗ implies ψ | P ′∗
2 S ψ | Q′∗

2 . From the closure proper-
ties of S, and since u v | P ′ ≡ u v | φ | ψ | P ′∗

2 , we fulfill the requirement
that u v | P ′ S u v | φ | ψ | Q′∗

2 . An analogous result holds for the tau
transition.

In the reverse direction, we construct a relation S on fusion terms such that
P S Q iff P ∗ e∼g Q∗. It remains to prove that the relation S is a hyper-
equivalence. Note that S is closed with respect to substitution, since the sub-
stitution {y/x} can be expressed as the context (x)(x y |), e∼g is closed with
respect to all contexts (Theorem 30, page 44), and ()∗ preserves substitution.
It is therefore enough to analyse a label P λ−→fu P

′ without substitution, since
all substitutions Pσ λ−→fu P ′′ automatically follow. Lemma 51 accounts for
output and input labels. For a ‘tell’ fusion label, suppose that P

!φ−→fu P ′.
From Lemmas 51 and 25,

P
!φ−→fu P

′ ⇒ P ∗ τ−→e φ | P ′∗

⇒ Q∗ τ−→e φ | Q′∗ with φ | P ′∗ e∼g φ | Q′∗.

From Lemma 51 we see that Q has a corresponding transition Q
!φ−→fu Q

′
1 with

φ | Q′∗
1 ≡ φ | Q′∗. Applying an appropriate restriction context to φ | P ′∗ e∼g

φ | Q′∗, we get the desired substitutive effect ρ of φ: that is, P ′∗ρ
e∼g Q′∗ρ, and

hence P ′ρ S Q′
1ρ. 2

Note that this section concerns only strong bisimulation congruences. The
results do not extend to the weak case. Indeed, Fu has shown that weak hyper-
equivalence in the fusion calculus is not even a congruence [23].

4.4 The pi calculus recalled

This section is a concise definition of the pi calculus and its barbed bisimulation.
It merely restates existing work; more detailed accounts may be found in recent

CHAPTER 4. EMBEDDING 68

books by Milner [45] and Sangiorgi and Walker [60]. We adopt the same set N
of names as for the explicit fusion calculus (Section 2.2, page 23), and the same
definitions of bound and free names.

Definition 53 (Pi calculus) The set Pπ of pi terms and Eπ of pi contexts are
given by

P ::= 0
∣∣ P |P

∣∣ !P
∣∣ (x)P

∣∣ ux̃.P
∣∣ u(x̃).P

E ::=
∣∣ ux̃.E

∣∣ u(x̃).E
∣∣ !E

∣∣ (x)E
∣∣ P |E

∣∣ E|P

where, in u(x̃), the x̃ are distinct.

Structural congruence for the pi calculus is like that for the explicit fusion
calculus, but with alpha-renaming instead of fusion interchange.

Definition 54 (Pi structural congruence) The structural congruence ≡
between terms is the smallest equivalence relation satisfying the following ax-
ioms, and closed with respect to the contexts | , ! , () and ax̃. :

1. Abelian monoid laws with 0 as identity
P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

2. scope laws
(xy)P ≡ (yx)P (x)(P | Q) ≡ (x)P | Q if x 6∈ fn(P)

3. replication
!P ≡ P | !P

4. alpha renaming
(x)P ≡ (y)P{y/x} u(x).P ≡ u(y).P{y/x} if y 6∈ fn(P)

Definition 55 (Pi observation, reaction) The observation relation P
µ−→

is the smallest relation satisfying

ux̃.P
u−→

u(x̃).P u−→

P | Q µ−→ if P
µ−→

(x)P
µ−→ if P

µ−→ and x 6∈ µQ µ−→ if Q ≡ P
µ−→

The internal reaction relation P
τ−→ P ′ is the smallest relation satisfying

ux̃.P | u(ỹ).Q τ−→ (P |Q){x̃/̃y}

P | Q τ−→ P ′ | Q if P τ−→ P ′

(x)P τ−→ (x)P ′ if P τ−→ P ′

Q
τ−→ Q′ if Q ≡ P

τ−→ P ′ ≡ Q′

Barbed bisimulation and shallow barbed congruence are defined for the pi
calculus in the same way as for the explicit fusion calculus (Definitions 33 and 35,
page 33).

CHAPTER 4. EMBEDDING 69

4.5 Embedding the pi calculus

In this section we define the translation from the pi calculus into the explicit
fusion calculus, and prove that it is sound with respect to shallow barbed con-
gruence on translated contexts.

Definition 56 The translation ()∗ : Pπ → Pφ is as follows.

0∗ = 0

(P | Q)∗ = P ∗ | Q∗

(!P)∗ = !(P ∗)
((x)P)∗ = (x)(P ∗)
(ux̃.P)∗ = ux̃.(P ∗)

(u(x̃).P)∗ = (x̃′)(ux̃′.(P{x̃′
/̃x}∗)), distinct x̃′ 6∈ {u} ∪ fnP

The final line of the translation uses distinct fresh names x̃′ to account for the
possibility that u ∈ x̃. For consider the pi calculus term x(x).P . It cannot
be translated as (x)xx.P ∗, since that would incorrectly bind the subject of the
action. By using substitution on the right hand side, rather than just assuming
that u 6∈ x̃, we obtain a translation that is purely structural on the left hand
side and does not need to be quotiented by alpha-renaming.

Definition 57 (Piability) A term Pφ in the explicit fusion calculus is piable
when there exists a term Qπ in the pi calculus such that Q∗

π ≡ Pφ. A context
Eφ in the explicit fusion calculus is piable when there exists a context Eπ in the
pi calculus such that for all Qπ, Eπ[Qπ]∗ ≡ Eφ[Q∗

π].

Piability is a key concept in embedding the pi calculus into the explicit fu-
sion calculus. We will see, for instance, that the set of piable contexts are no
more discriminating than pi contexts. In Chapter 6 we extend the definition of
piability to also talk about piable fusion machines.

We need to find an inductive characterisation of piability for use in formal
proofs. First, consider some examples.

1. (x)(ux.Q∗
π) is piable: it is the image of (x)ux.Qπ under (·)∗.

2. (x)(ux.Q∗
π) is piable: it is the image of u(x).Qπ.

3. (x)(x y | ux.Q∗
π | uy) is piable: it is the image of uy.Qπ{y/x} | uy

4. x y | Q∗
π is not piable.

5. (x)!(x y | Q∗
π) is not piable.

6. (x)(x y | ux.Q∗
π | uy) is not piable.

7. (x)(xx.Q∗
π) is not piable.

The first three examples show the three roles played by restriction in the explicit
fusion calculus. Sometimes, as in Example 1, a restriction is just a restriction.
Sometimes, as in Example 2, it performs the binding in a bound input. Some-
times, as in Example 3, it discharges an explicit fusion. (As in Example 4, all
fusions must be discharged.) Restriction cannot fulfill more than one role at a

CHAPTER 4. EMBEDDING 70

time. For instance, in Example 6, it cannot both discharge the fusion and bind
the input.

Example 7 shows a technical complication to do with alpha-renaming. The
bound input x(x).P in the pi calculus can only be translated as (x′)xx′.P ∗,
where the bound input name does not clash with the subject of the communi-
cation.

In giving an inductive characterisation of piability, we will write pairs of the
form (x̃, P), where x̃ is a set of distinct names and P is a term in the explicit
fusion calculus. This pair corresponds to the term (x̃)P , but where every name
in x̃ will play the role of binding an input within P . We will write relations of
the form

(x, ux.Q∗
π) T u(x).Qπ

to relate an explicit fusion term on the left to a pi calculus term on the right.
The relation is a syntactic one, not quotiented by structural congruence or
alpha-renaming. The three roles for restriction will be manifest in the rule for
restriction. The relation T between pairs and terms in the pi calculus is as
follows:

(∅,0) T 0

(∅, ux̃.P) T ux̃.Q if (∅, P) T Q

(x̃, ux̃.P) T u(x̃).Q if (∅, P) T Q, u 6∈ {x̃}
(∅, !P) T !Q if (∅, P) T Q

(x̃, P1|P2) T Q1|Q2 if ∃x̃1, x̃2 partitioning x̃ : x̃1 6∈ fn(P2), x̃2 6∈ fn(P1),
(x̃1, P1) T Q1, (x̃2, P2) T Q2

(x̃, (z)P) T Q if z 6∈ {x̃} and one of
(x̃ ∪ {z}, P) T Q, or
(x̃, P) T Q′ where Q is (z)Q′, or
∃y : (x̃, P{y/z}) T Q with (z, y) ∈ Eq(P), z 6= y.

We illustrate T by showing how to derive a relation for the explicit fusion term
(x)(vx.0 | (x)ux.0).

(x, ux.0) T u(x).0 from in,nil (11)
(∅, (x)ux.0) T u(x).0 from res1,11 (12)

(x, vx.0) T v(x).0 from in,nil (13)
(x, vx.0 | (x)ux.0) T v(x).0 | u(x).0 from 12,13 (14)

(∅, (x)(vx.0 | (x)ux.0)) T v(x).0 | u(x).0 from res1,14 (15)

The rule for restriction is subtle. It means, for instance, that none of the
following three examples are related by T to any term in the pi calculus:

1. (x, (x)ux.Q∗
π),

2. (x, (x)Q∗
π),

3. (x, (x)(y)(x y | uy.Q∗
π).

CHAPTER 4. EMBEDDING 71

The principle behind rejecting these examples is that in a pair (x̃, P), every
name in x̃ will be used as a bound input. In the examples, some outer restriction
(x) had already been mistakenly placed in the first element of the pair, in the
mistaken belief that it would be used for bound input. Whereas, in fact, the
outer restriction can bind input in none of the examples.

Although we defined the relation T without alpha renaming, we can deduce
alpha renaming:

Lemma 58

1. If (∅, P) T Q then (∅, P{y/x}) T Q{y/x}.

2. If (x̃, P) T Q and ỹ 6∈ {x̃} ∪ fnP then (ỹ, P{ỹ/̃x}) T Q′ where Q′ = Q up
to alpha renaming.

Proof. Both parts are inductions on the derivation of the T relation. The first
part is trivial, so I focus on the second. The principle is straightforward: given
the derivation of (x̃, P) T Q, there must be an almost identical derivation
which uses ỹ instead of x̃. The proof is not difficult, just fiddly. I will write
(x̃, P) T = Q as an abbreviation for ∃Q′ : (x̃, P) T Q′ and Q = Q′ up to alpha
renaming. There are five ways that (x̃, P) T Q might have been deduced:

1. (x̃, ux̃.P) T u(x̃).Q with (∅, P) T Q and u 6∈ x̃. By the first part,
(0, P{ỹ/̃x}) T Q{ỹ/̃x}. Since ỹ does not clash with ux̃.P , u 6∈ ỹ. Therefore
(ỹ, uỹ.P{ỹ/̃x}) T u(ỹ).Q{ỹ/̃x} as desired.

2. (x̃, P1|P2) T Q1|Q2 with x̃1, P1) T Q1 and (x̃2, P2) T Q2 and x̃1 6∈ fnP2

and x̃2 6∈ fnP1. By the induction hypothesis, (ỹi, Pi{ỹi/̃xi}) T = Qi for
i ∈ {0, 1}. Now ỹ was chosen to be fresh; therefore ỹ1 6∈ fnP2{ỹ2/̃x2} and
ỹ2 6∈ fnP1{ỹ1/̃x1}. Therefore (ỹ, (P1|P2){ỹ/̃x}) T = Q1|Q2 as desired.

The final three ways all have the form (x̃, (z)P) T Q with z 6∈ x̃. Given
the compound substitution {ỹ/̃x} = {y1/x1} . . . {yn/xn}, we will one individual
substitution {y/x} at a time, for y being some yi and x some xi. Let σ = {y/x}.
Now the substitution ((z)P){y/x} has three possible forms according to whether
(a) x 6= z, y 6= z or (b) x 6= z, y = z or (c) x = z. In fact the (c) form is not
possible, since (x̃, (z)P) can only have been deduced from z 6∈ x̃.

3a. (x̃, (z)P) T Q with z 6∈ x̃ and (x̃z, P) T Q) and x 6= z and y 6= z. From
the induction hypothesis, (x̃zσ, Pσ) T = Q. Since σ does not affect z we
get x̃zσ = x̃σz. And because z 6∈ x̃σ we get (x̃σ, (z)(Pσ)) T = Q as
desired.

3b. (x̃, (z)P) T Q with z 6∈ x̃ and (x̃z, P) T Q. Now the substitution
on ((z)P){y/x} yields (z′)(P{z′

/z}{y/x}) for some z′ not in P . Since x
binds an input in P , z 6= x. Therefore (x̃σ, P{z′

/z}{z/x}) T = Q, giving
(x̃σ, (z′)(P{z′

/z}{z/x})) T = Q as desired. As shown, the (b) cases are
not fundamentally different from the (a) cases, so we omit them in the
following.

4a. (x̃, (z)P) T Q with z 6∈ x̃ and y 6= z and y 6∈ fnP and (x̃, P) T Q. By
the induction hypothesis, (x̃σ, Pσ) T = Q. And since z 6∈ x̃σ, we get
(x̃σ, (z)(Pσ)) T = (z)Q as desired.

CHAPTER 4. EMBEDDING 72

5a. (x̃, (z)P) T Q with z 6∈ x̃ and y 6= z and y 6∈ fnP and there exists a
w such that (x̃, P{w/z}) T Q and (z, w) ∈ Eq(P) and z 6= w. From the
induction hypothesis, (x̃σ, P{w/z}{y/x}) T = Q. Now there are two further
possibilities:

(a) w = x. Then the above equation becomes (x̃σ, P{y/x}{y/z}) T = Q
with (z, x) ∈ Eq(P) and z 6= x. Therefore (z, y) ∈ Eq(P{y/x}).
Moreover, since y is different from both x and z, we can swap the
substitutions. This yields (x̃σ, P{y/x}{y/z}) T = Q, which leads di-
rectly to the desired result.

(b) w 6= x. Then we can re-order the substitutions from our induction
hypothesis. This yields (x̃σ, P{y/x}{w/z}) T = Q, which leads directly
to the desired result. 2

The following lemmas lead to a statement that the relation T does indeed
describe piability. In these lemmas we adopt the convention that P ranges over
terms in the explicit fusion calculus and Q over terms in the pi calculus. The
statements of the lemmas include subscripts Pφ and Qπ, but the subscripts are
omitted within proofs.

Lemma 59 (x̃, Pφ) T Qπ implies (x̃)Pφ ≡ Q∗
π.

Proof. A straightforward induction on the derivation of the left hand side (which
amounts to an induction on the structure of P). 2

Lemma 60 Given Qπ, there exists a Q′
π such that (0, Q∗

π) T Q′
π.

Proof. An induction on the depth of structure of Qπ. We do not obtain the
simpler statement (0, Q∗

π) T Qπ because the translation (·)∗ renames the subject
of bound input. For instance, if Qπ = u(x).P then Q∗

π = (x′)(ux′.P{x′
/x}, and

so we only get (0, Q∗
π) T u(x′).P{x′

/x}). This issue is manifest in the induction
step for bound input, which we now consider.

1. Now the induction goes over the depth of the structure of Q, and since
Q{x̃′

/̃x} has lesser depth, the induction hypothesis yields

(∅, Q{x̃′
/̃x}∗) T Q′

for some Q′. It follows that

(x̃′, ux̃′.(Q{x̃′
/̃x}∗)) T Q′.

Hence we get the desired result:

(∅, (x̃′)ux̃′.(Q{x̃′
/̃x}∗)) T Q′

The other induction steps are straightforward. 2

Lemma 61 If Pφ ≡ P ′
φ and ∃Qπ, w̃ : (w̃, Pφ) T Qπ then ∃Q′

π : Q′
π ≡ P ′

φ ∧
(w̃, P ′

φ) T Q′
π.

Proof. The proof of the lemma is a lengthy induction over the derivation of
P ≡ P ′.

CHAPTER 4. EMBEDDING 73

1. The Abelian monoid laws are straightforward. For instance, if (∅, P | Q) T
R′, this must have been deduced from (∅, P) T P ′ and (∅, Q) T Q′ and
R′ = P ′ | Q′. Therefore, changing the order, (∅, Q | P) T Q′ | P ′.

2. The first scope law, (xy)P ≡ (yx)P , expands out to nine different cases,
according to which of the three restriction roles was played by x, and then
which of the three was played by y. In the first case, for instance, both x
and y are used to bind an input within P , so that we deduced (∅, (xy)P) T
P ′ from (xy, P) T P ′. We can easily reconstruct (y, (x)P) T P ′ and then
(∅, (yx)P) T P ′. Another case is when x was used to bind input, and y
was used to discharge a fusion. This would happen in the example

(∅, (xy)(y x | ux.P ∗)) T u(x).P{x/y}. (16)

In this case, the relation is deduced from (x, (y)(y x | ux.P ∗)) T R′, which
in turn is deduced from (x, (y x | ux.P ∗){x/y}) T R′. By Lemma 58 we
can alpha-rename this, giving (y, (y x | ux.P ∗){x/y}{y/x}) T = R′. Then
it is straightforward to apply the restriction x, followed by the restriction
y. The second scope law is more straightforward.

3. Reflection and transitivity are straightforward. So are the laws for fusion
equivalence and interchange.

4. The only interesting case for congruence is when, given P ≡ Q, we deduce
(x)P ≡ (x)Q. Now, suppose (w̃, (x)P) T P ′. By definition of T , x 6∈ w̃.
The restriction might be playing one of three roles. Let us consider the
first role, of binding some input command. Then (w̃x, P) T P ′. From
the induction hypothesis, (w̃x,Q) T Q′ such that Q′ ≡ P ′. Therefore
(w̃, (x)Q) T Q′ as desired. The other roles are similar. 2

With these two lemmas we can establish that the relation T can indeed be
used to characterise piability:

Corollary 62 Pφ is piable if and only if ∃Qπ : (∅, Pφ) T Qπ.

Proof. In the forward direction, the definition of piability says that there exists
a Qπ such that Pφ ≡ Q∗

π. Now we know from Lemma 60 that there exists a Q′
π

such that (0, Q∗
π) T Q′

π. Finally, since Pφ ≡ Q∗
π, and from Lemma 61, there

also exists some Q′′
π satisfying the lemma.

In the reverse direction, suppose ∃Qπ : (∅, Pφ) T Qπ. By Lemma 59, Q∗
π ≡

Pφ, so Pφ is indeed piable. 2

Corollary 63 If Pφ is piable, and Pφ ≡ P ′
φ, then P ′

φ is also piable.

We will now see that the translation ()∗ preserves barbs and reactions.

Lemma 64

1. Q∗
π

µ−→ implies Qπ
µ−→.

2. Q∗
π

τ−→ P ′
φ implies there exists a Q′

π such that Qπ
τ−→ Q′

π and P ′
φ ≡ Q′∗

π ,

Proof. The first part is a straightforward induction on the structure of Qπ.
For the second part, we perform an induction on the derivation of P τ−→ P ′

with the induction hypothesis that

CHAPTER 4. EMBEDDING 74

• if (x̃, P) T P1 and P τ−→ P ′ then there exists a P ′
1 such that (∅, (x̃)P ′) T

P ′
1.

Note that the assumption of this hypothesis uses (x̃, P) while the consequent
uses (∅, (x̃)P ′). The names x̃ have changed place: in the assumption, they are
all being used to bind input; in the consequent, some will discharge the resulting
fusions while others will just be restrictions.

There are four cases to consider: the base case, congruence with restriction,
congruence with parallel composition, and structural congruence. We show the
base case, and parallel composition; the others are straightforward.

1. Say (z̃, ux̃.P | uỹ.Q) T R. Therefore z̃ must be just ỹ. We must demon-
strate an R′ such that (∅, (ỹ)(x̃ ỹ | P | Q)) T R′. This is straightforward,
since the restrictions just discharge the fusions.

2. Say (z̃, P |Q) T R and P |Q τ−→ P ′|Q. Now z̃ can be partitioned into
z̃1 and z̃2, with (z̃1, P) T P1 for some P1. Note that every name in
z̃ is fulfilling the role of binding input. Therefore, the partitioning will
not affect the ability of P and Q to interact. By the induction hypothesis,
(∅, (z̃1)P ′) T P ′

1 for some P ′
1. The desired result can be constructed easily.

2

Lemma 65 For terms Qπ and Q′
π in the pi calculus,

1. Qπ
µ−→ implies Q∗

π
µ−→.

2. Qπ
τ−→ Q′

π implies Q∗
π

τ−→ Q′∗
π .

Proof. Straightforward, since the explicit fusion calculus is a generalisation of
the pi calculus. 2

Corollary 66 (Bisimulation) Qπ
·∼b Q′

π if and only if Q∗
π

·∼b Q′∗
π

Weak bisimulation is also preserved.

Congruence. We now turn to congruence. We show that if two pi terms
are barbed bisimilar in all pi contexts (i.e. shallow barbed congruent), then
their translations are barbed bisimilar in all piable explicit fusion contexts. As
explained in Section 4.1, this result is enough for practical purposes. We also
show that general explicit fusion contexts are strictly more discriminating than
piable explicit fusion contexts. Let us first consider some features of piable
contexts.

Fusing power. No pi context can ever make x and y equal in the program
Qπ = (xy)(uxy | x | y), and so direct reaction between x and y is impossible.
However, the explicit fusion context Eφ = uzz will make them equal, so allowing
a direct reaction. This difference is the reason why explicit fusion contexts are
more discriminating than pi contexts.

I conjecture that, for weak bisimulation, pi contexts are not less discriminat-
ing that explicit fusions. That is because weak bisimulation does not distinguish
whether x and y are directly equal, or merely connected by an equator. I leave
this as an open problem, because, as explained in Section 3.9, weak bisimulation
is difficult.

CHAPTER 4. EMBEDDING 75

Non-universality. The pi context u(u). does not have a corresponding con-
text Eφ in the explicit fusion calculus, such that ∀Qπ : Eπ[Q]∗ ≡ Eφ[Q∗]. This
is because, to translate the pi context, we need to pick a fresh name u′, giving
(u′)u.({u′

/u}). And it is not possible to choose a u′ which will be fresh for
every Qπ which might be placed in the hole. Instead, this pi context really
corresponds to a family of explicit fusion contexts, each one hypothecated to a
set of permissible names in the hole.

I conjecture that, nevertheless, piable contexts are exactly as discriminating
as pi contexts. That is to say, the embedding of the pi calculus into the ex-
plicit fusion calculus is complete as well as sound. To prove this would require
emulating the substitutive context {u′

/u}, as in the following.
Non-substitutability. Consider Eφ = (x)(x y |). It is true that for all Pφ

that are piable, Eφ[Pφ] is also piable. However, the context Eφ itself is not
piable. That is because it amounts to a substitutive context {y/x}, and the pi
calculus does not have directly substitutive contexts. Instead, in the pi calculus,
such substitutions must be emulated: Eπ = (u)(uy | u(x).).

Given this issue of non-substitutability, one might ask why we defined piable
contexts as we did:

• (shallow) a context Eφ is piable when there exists an Eπ such that for all
Qπ, Eπ[Qπ]∗ ≡ Eφ[Q∗

π],

rather than

• (reduction-closed) a context Eφ is reduction-closed piable when for all Pφ
that are piable, Eφ[Pφ] is also piable.

The names given to the two definitions are suggestive of the reason, which is
as follows. We are working with shallow congruence. This places the programs
in an initial context: this models the practical situation where we are using the
program as a library routine within some larger program (it’s context). There-
fore this context will not have reacted yet, and is still just a direct translation
of some pi program: i.e. it is a piable context.

However, if we had used reduction-closed congruence, we would be mod-
elling the situation where partially-executed programs can be placed in partially-
executed contexts. Such partially-executed contexts might perhaps not be pi-
able (as per the example of non-substitutability) even though the system as a
whole might still be piable (as per the reduction-closed definition). This is why
reduction-closed congruence would use its different version of piability.

Proposition 67 (Shallow soundness) For all terms Qπ and Q′
π in the pi

calculus, ∀Eπ : Eπ[Qπ]
·∼b Eπ[Q′

π] implies ∀Eφpiable : Eφ[Q∗
π]

·∼b Eφ[Q′∗
π].

Proof. We are given that

∀Eπ : Eπ[Q] ·∼b Eπ[Q′].

Also, by definition of piability, we know that for all piable Eφ,

∃Eπ : Eπ[Q]∗ ≡ Eφ[Q∗] ∧ Eπ[Q′]∗ ≡ Eφ[Q′∗].

From these two, and Corollary 66, we get that for all piable Eφ,

∃Eπ : Eφ[Q∗] ≡ Eπ[Q]∗ ·∼b Eπ[Q′]∗ ≡ Eφ[Q′∗]. 2

CHAPTER 4. EMBEDDING 76

Example 68 There exist pi calculus terms Qπ and Q′
π which are barbed bisimi-

lar in all pi contexts, but there is an explicit fusion context Eφ such that Eφ[Q∗
π]

and Eφ[Q′∗
π] are not barbed bisimilar.

Proof. We will use the fact that, in the pi calculus, the restriction (xy)(uxy | P)
ensures that the names x and y will never become fused in P . By contrast, in
the explicit fusion calculus, the context | uzz will make them fused. We
need to find two terms P and Q which have the same behaviour when x and
y are different, but different behaviours when they are the same. Boreale and
Sangiorgi have provided two such terms [8].

In the following, we will write τ.P as an abbreviation for (u)(u | u.P), and
use E as an abbreviation for (xy)(ux | uy |).

P
def= !y.x.τ.z | !x.y.τ.z

Q
def= !(w)(y.w | x.w.z)

Note that when x = y, then Q has a barb on z after two steps, but P has one
only after three. Therefore E[P] and E[Q] are not barbed congruent in the
explicit fusion calculus. However, they are in the pi calculus. 2

Conclusions. This concludes our proofs of the embeddings of the fusion cal-
culus and the pi calculus into the explicit fusion calculus. Let us review what
has been accomplished in this chapter.

We have proved that the embedding of the fusion calculus into the explicit
fusion calculus is both sound and complete—i.e. it is fully abstract. This means
that we can use proof techniques from the explicit fusion calculus, such as ef-
ficient bisimulation, to prove properties about programs in the fusion calculus.
However, the explicit fusion calculus allows some terms to react that cannot re-
act in the fusion calculus. This means that the explicit fusion calculus is not well
suited as an implementation of the fusion calculus. Indeed, an implementation
of the fusion calculus is generally awkward, since its reaction is not local.

We have however proved that reaction and barbs in the pi calculus corre-
spond exactly to reaction and barbs of translated terms in the explicit fusion
calculus. We have further proved that the embedding of the pi calculus into the
explicit fusion calculus is sound with respect to translated contexts. In Chap-
ter 6 we will extend this result to the fusion machine (which is based on the
explicit fusion calculus), to prove that the fusion machine is a sound implemen-
tation of the pi calculus.

Chapter 5

The fusion machine

The fusion machine is a distributed, concurrent implementation of the explicit
fusion calculus and the pi calculus. This chapter explains it through diagrams
and examples. The working programmer will find these sufficient to implement
the machine. Proofs of correctness, and a formal algebraic notation, are found
in Chapter 6 (page 94).

This chapter has six sections. Each section describes a progressively more
powerful fusion machine:

5.1. Operation. A basic machine, able to implement input and output com-
mands in parallel.

5.2. Restriction. How restriction in the calculus can be modelled in the ma-
chine by a registry of free names.

5.3. Deployment. Support for the prefix operator, through the deployment of
continuations.

5.4. Replication. Support for the replication operator. The machine can now
execute all programs in the explicit fusion calculus.

5.5. Co-location. Optimisations that become possible when two channel man-
agers happen to reside on the same physical computer.

5.6. Fairness and failure. Discussion of further work.

I invented the fusion machine in an attempt to write a native compiler for
the pi calculus: that is, a way to compile each part of a pi program into machine
code that executes directly, rather than into data that is manipulated by a run-
time interpreter. My intuition was that channel management in the pi calculus
seems similar to memory management in a conventional programming language:
therefore the same techniques developed for optimising compilers should also ap-
ply to an implementation of the pi calculus. Now in a conventional language it
is more efficient for data to be stored on the stack than in the heap. This is
because a computer can access the stack directly, whereas heap access involves
an indirection. (Direct stack access amounts to using De-Bruijn indices; heap
access amounts to looking up a name.) Also, using a stack avoids the need for
garbage collection. But we have a problem applying this principle to the pi

77

CHAPTER 5. FUSION MACHINE 78

calculus: the stack cannot be used for variables with dynamic scope, and yet
dynamic scope is a fundamental part of the pi calculus. My solution is to place
code inside the channel managers. This allows the code to refer directly to its
own channel, without the need for a name lookup.

The fusion machine therefore uses channel managers. One might ask whether
it is possible to make a distributed implementation of the pi calculus with-
out channel managers. Schwartz [61] has shown how to do without channel-
managers in the special case where the connections between programs never
change. However, his technique takes a large number of handshakes, and in any
case it cannot be extended to the full pi calculus.

5.1 Operation

The fusion machine is a collection of located channel-managers which run in
parallel and which interact. Each channel-manager contains fragments of a pro-
gram. Some fragments it sends across the network to other channel-managers;
other fragments it executes locally. Through these two operations it implements
the explicit fusion calculus and the pi calculus. In these calculi, the only work
done by local execution is to fuse names. However, it is easy to integrate other
languages into the fusion machine, to do other local work.

Assume a set of channel names ranged over by u, v, w, x, y, z with a total
order. The order might use Internet Protocol numbers and port numbers. At
each location there is a channel-manager for exactly one channel name. We
therefore identify locations, channels and names. (Later in the chapter, we will
introduce co-located channels.) Each channel-manager is made from three parts:
a fusion-pointer (F), atoms (A) and a deployment area (D). It is pictured as
follows:

u:
F

A

D

name of this channel-manager

fusion-pointer

atoms

deployment area

The fusion pointer is either the name of some other channel, or empty. If it
does point to some other channel, then the atoms contained in the channel-
manager may be sent across the network to that other channel. The atoms are
a collection of output atoms outx and a separate collection of input atoms inx.
In general they may be polyadic (communicating several names), although this
chapter uses only monadic (single names) for simplicity. The deployment area is
a collection of fusions x y. From each collection, we assume the implementation
is able to pick an arbitrary element. Let m range over {out, in}.

As an example, the following diagram represents the term ux | uy | x | y :

u:
−

outx iny

−

x:
−

out

−

y:
−

in

−

(17)

CHAPTER 5. FUSION MACHINE 79

In the basic machine without prefixes, there are just three transition rules.
The explanation for why the rules are as they are, and how just three rules are
sufficient, is subtle. We give the rules first, then illustrate how they execute the
above program, and then explain them.

u:
F

outx iny
A
D

−→

u:
F

A

x y;D

(interact)

u:
v

mx; A

D

v:
F ′

A′

D′

−→

u:
v

A

D

v:
F ′

mx; A′

D′

(migrate)

u:
F

A

x y; D

x:
z

A′

D′

−→

u:
F

A

D

x:
y

A′

y z; D′

(fuse)

In the final rule we assume x < y in the total order on names. This means that
lesser names always point to greater names, and (as explained below) will lead
to the fusion pointers forming a tree. If in the final rule x started with an empty
fusion pointer rather than z, then we omit y z in the result. A fusion x y in the
deployment area is equivalent to y x.

To illustrate the execution of the machine, we now show the execution trace
of Example 17

(page 78). The following steps represent ux | uy | x | y −→ x y | x | y ≡
x y | y | y −→ x y, assuming x < y.

u:
−
inx
outy
−

x:
−

out

−

y:
−

in

−

interact−→

u:
−

−

x y

x:
−

out

−

y:
−

in

−

fuse−→

u:
−

−

−

x:
y

out

−

y:
−

in

−

migrate−→

u:
−

−

−

x:
y

−

−

y:
−
out
in
−

CHAPTER 5. FUSION MACHINE 80

interact−→

u:
−

−

−

x:
y

−

−

y:
−

−

−

We now explain the role of the fusion-pointer inside each channel-manager,
and explain the rules. The fusion machine operates around fusion-pointers:
interaction creates them; fusion deploys them into fusion-pointers; and migra-
tion uses them. To understand the role of a fusion pointer, first consider the
term u v x y | x | u in the explicit fusion calculus. The fusions generate an
equivalence relation on names. In this example they allow reaction, since u is
interchangeable with x. We might picture the term as follows:

qq q
q��@

@

�
� @

@

y

v

u

x

�� in

��
out

However, in a distributed setting, u and x are different names, and hence at
different locations. In order that the atoms at u and x can react together,
we must send them to a common location on the network. The decision
as to where to send them must be taken locally: the channel-manager at u
must choose where to send its input atom, and the channel-manager at x must
choose where to send its output atom. The problem is to find an algorithm
and data structure that allows such local decisions. The solution used in the
fusion machine is to represent the equivalence relation by a rooted tree. Then
each channel in the tree can send its atoms to its parent, and the atoms are
guaranteed to arrive, eventually, at the same location. In the following picture,
both atoms will migrate to y where they can react:

qq q
q �
�	

@
@R

@
@R

y

v

u

x

�� in

��
out

For each channel, the pointer to its parent in the tree is stored as its fusion-
pointer F . (In the diagrams above, children are at the top and parents at the
bottom.)

The fusion transition should be understood in the following sense. Interac-
tion gives rise to a fusion of two names, and this fusion must ultimately merge
their corresponding trees. The algorithm for merging is complicated. So, we
break it into smaller steps. The algorithm’s intermediate state between steps is
stored entirely as fusions in the deployment area. And the algorithm’s invariant
is that the tree respects the order on names, such that greater names are placed
closer to the root. Therefore, each fusion transition takes a fusion progressively
closer to the root, and the algorithm necessarily terminates.

A sequence of fusion transitions is illustrated below. In these pictures, a
thick grey line from b to d indicates that some channel-manager contains the
fusion b = d in its deployment area. We assume the standard alphabetical order

CHAPTER 5. FUSION MACHINE 81

on names. Observe how the fusion is moved progressively closer to the root (at
the bottom) of the tree, until finally it can be satisfied.

a

c b
d

f

e

dep.fu−→

a

c b
d

f

e

dep.fu−→

a

c b
d

f

e

This algorithm for merging trees is similar to the Union/Find algorithm of
Tarjan [67]: it also represents an equivalence relation as a set of trees, with
each tree corresponding to an equivalence class, and it forms the union of two
equivalence classes by making one tree a child of another.

There is no handshaking involved in any of the transitions: that is to say,
each transition can be accomplished with just a single message from one channel
to another, and no acknowledgement or reply is needed. In all three rules listed
on page 79, the channel-manager at u makes a local decision to do something
and then perhaps sends a message. For migration, the message is ‘please accept
this migrant’. For fusion, the message is ‘please fuse yourself to y’. (Although
they never shake hands, fusion machines are invariably polite!) It would be
strictly more correct, although no clearer, to write the sending of a message
as one transition, and the reception as another. Then each rule could be writ-
ten involving just a single machine and the ether—this ether representing the
network fabric through which messages propagate. We might also account for
message failure by deleting random messages from the ether. However, I will
only address questions of efficiency and not of failure.

5.2 A registry of free names

We now consider restriction in the pi calculus and explicit fusion calculus, and
how to implement it. The role of restriction in the calculi is easy to understand:
it is a binder; it allows for alpha-renaming; through scope-extrusion, it indicates
how far the knowledge of a name might have escaped; it allows two terms to
be placed in parallel without name-clashes; and it can make a channel local, so
that no external program can rendezvous at it.

In an implementation, the important role concerns the separate compilation
of programs. Suppose that one program is already running, with its various
channels at their IP and port numbers. And suppose that we later wish to
write a second program, and have it interact with the first. To do this, the
second program must know which IP and port numbers are used by the first.
There are two possible techniques to discover these numbers. First, there might
be some registrar of published channels. The Internet’s Domain Name Service
is such a registrar: after noticing the name ‘www.wischik.com’ in a dissertation,
we can ask the Domain Name Service for the IP number for that name. (As
for the port number, Internet convention is that web services are provided on
port 80). To find names in this way obviously requires the original program to
have published its details in the registrar. The second way to discover IP and
port numbers, is simply to scan through all possible numbers. This technique
is typically used to find vulnerable channels and gain illegal access to machines.

CHAPTER 5. FUSION MACHINE 82

We treat free names, then, as a model for this central registry. All free
names are in the registry. All names bound by a restriction are not in the
registry. We will write (|x|) to indicate a channel-manager x which is not in the
registry: therefore, no additional programs can rendezvous at x, unless they are
told its name through some other communication.

The other roles of restriction are not so relevant. The fusion machine will
create fresh names that are globally unique. This is easy to do in practice, but
awkward in theory, and the calculus roles of alpha-renaming and binding are
just a model for it. The calculus role of avoiding name-clashes is not so relevant
for an implementation: IP numbers are normally unique, by construction, so
plugging two networks together does not result in clashes. The final role for
restriction, of preventing an external program from even guessing an IP and
port number, is only relevant in a security-conscious application designed to
be robust even in the presence of port-scans. In any case, the explicit fusion
calculus has no command for guessing IP and port numbers, so the issue does
not arise when implementing the calculus.

Consider the final state of the execution trace on page 79:

u:
−

−

−

x:
y

−

−

y:
−

−

−

(18)

If it had happened that the names u and x were private, not in the registry,
we would instead have had this:

(|u|):
−

−

−

(|x|):
y

−

−

y:
−

−

−

(19)

Here, no additional program can ever rendezvous at channels u or x again: we
might therefore delete them both. A simple reference-counter would suffice to
tell whether an unregistered channel-manager can be deleted. I suspect that a
delete command would also be useful in practice.

Remember that fusions respect the total order on names: they always go
from the lesser name to the greater. If in the above example y had been a lesser
name than x, then x would always be referenced and so could never be freed.
This is wasteful. To avoid it, the registered names should rank higher in the
total order than unregistered names.

It must be stressed that the registry of names has no bearing on the operation
of the machine. The machine operates in exactly the same way regardless of
which names are in the registry. Although we will write all the operations of
the machine with registered names, they apply equally to private names. It
would in fact be possible to define the machine without any registry at all, as
discussed in the following chapter. However, we shall retain the registry, as
a point of familiarity with the calculus and also as a technical aid in defining
barbed bisimulation.

CHAPTER 5. FUSION MACHINE 83

5.3 Deployment

We now add rules to the machine so as to support the deployment of arbitrary
terms. There are two cases when deployment is used: first, when pre-deploying
a program which has been fragmented for efficiency; second, when deploying
some guarded term that has been newly liberated after a reaction. In fact, both
cases use exactly the same deployment rules. The additions to the machine are
straightforward: we allow prefixed input and output atoms; and, rather than
just explicit fusions in the deployment area, we allow arbitrary terms from the
calculus. We will focus on explicit fusion calculus, but will also show how to
deploy terms from the pi calculus.

Let the atoms (A) now be a collection of output atoms outx.P and a col-
lection of input atoms inx.P , both prefixing some term P in the explicit fusion
calculus. Let the deployment area (D) now be a collection of arbitrary terms
in the explicit fusion calculus, rather than just explicit fusions. We modify the
interaction transition to account for the prefix, and add one deployment tran-
sition for each construct in the calculus. The deployment of explicit fusions is
as before; we give it the uniform name (dep.fu) rather than its previous name
(fuse). The new transitions are as follows.

u:
F

outx.P iny.Q
A
D

−→

u:
F

A

x y;P ;Q;D

(interact)

This interaction transition is like the previous interaction transition, but aug-
mented to operate upon atoms which guard a term. After reaction, the term is
placed in the deployment area, where it can be deployed further.

u:
F

A

P |Q;D

−→

u:
F

A

P ;Q;D

(dep.par)

u:
F

A

0;D

−→

u:
F

A

D

(dep.nil)

u:
F

A

vx.P ;D

v:
F ′

A′

D′

−→

u:
F

A

D

v:
F ′

outx.P
A′

D′

(dep.out)

CHAPTER 5. FUSION MACHINE 84

u:
F

A

vx.P ;D

v:
F ′

A′

D′

−→

u:
F

A

D

v:
F ′

inx.P
A′

D′

(dep.in)

These deployment transitions are all straightforward. They take a program
fragment from the deployment area, and either break it down further or send
it to the correct place in the network. To send it, we can use exactly the same
migration messages as before—although each message now includes a contin-
uation, and may well be large. Turner uses similar deployment transitions in
his uniprocessor abstract machine (described in Section 1.3, page 10 of this
dissertation).

u:
F

A

(x)P ;D

−→

u:
F

A

P{z/x};D

(|z|):
−

−

−

z fresh (dep.new)

This transition deploys a restriction. It does this by creating a new, unique
channel-manager. Here, we represent the fact that the channel-manager is new
and unique by calling it with a fresh name—one that is globally unique.

We might also add a further deployment transition, as below. It is not
necessary for the expressiveness of the fusion machine, but it conveniently allows
the machine to execute pi calculus terms directly. In effect, it translates terms
from the pi calculus into the explicit fusion calculus.

u:
F

A

u(x).P ;D

−→

u:
F

A

(x)ux.P ;D

(dep.bound)

Now that machines include deployment, we can represent a programmer who
writes a program P and runs it on the fusion machine. Perhaps this programmer
loads his program onto the network in Cambridge, location c. The initial state
is simply c; [−,−, P]. If the optimising compiler had seen fit to fragment the
program P into two parts (t)(P1 | P2), so as to reduce total message size, then
the initial state is c:[−,−, (t)(P1 | P2)]. Thus, exactly the same technique can
be used to pre-deploy program fragments, as to deploy terms newly liberated
by reaction.

As an example, let P = u | u.v.Q, and suppose it has been fragmented into
(t)(u | u.v.t | t.Q) where t is not free in u.v.Q. Let t′ be fresh.

c:
−

−

(t)(u|u.v.t|t.Q)

u:
−

−

−

v:
−

−

−

CHAPTER 5. FUSION MACHINE 85

dep.new−→

c:
−

−

u | u.v.t′ | t′.Q

u:
−

−

−

v:
−

−

−

(|t′|):
−

−

−

dep.par−→−→

c:
−

−

u;u.v.t′; t′.Q

u:
−

−

−

v:
−

−

−

(|t′|):
−

−

−

dep.out.in−→−→−→

c:
−

−

−

u:
−
out

in.v.t
′

−

v:
−

−

−

(|t′|):
−

in.Q

−

interact−→

c:
−

−

−

u:
−

−

v.t
′

v:
−

−

−

(|t′|):
−

in.Q

−

migrate−→

c:
−

−

−

u:
−

−

−

v:
−

in.t
′

−

(|t′|):
−

in.Q

−

One thing to observe in this example is how the fragment t.Q only migrates once,
to its final destination t. If we had run the program without fragmenting it,
then Q would have had to migrate twice—first to u, and then to v. If Q happens
to be a large program, slow to send over the network, then our fragmentation
technique has gained efficiency.

Note that the exact order of deployment depends on the (arbitrary) order in
which terms are chosen from the deployment area. The execution trace above is
an arbitrary trace—not the only one. However, the above example is confluent
no matter which trace is chosen. In the following chapter we will see that all
deployment transitions are confluent: it is only through interaction that non-
determinism arises, just as in the calculus.

5.4 Replication

We now add rules to the machine so as to support replication. The idea is that
replicated atoms can interact in exactly the same way as normal atoms, except

CHAPTER 5. FUSION MACHINE 86

that they are not used up by the interaction. Now that the machine includes
replication, it can implement the full explicit fusion calculus and pi calculus.

The machine incorporates several simplifying assumptions, notably in its use
of guarded replication (i.e. the replication of an input or output command). We
present the machine with replication first, and discuss the assumptions after-
wards.

Let there be two additional kinds of atoms: replicated output !out(x).P , and
replicated input !in(x).P . Again we write monadic restriction for simplicity;
polyadic restriction is straightforward. In these atoms, x is bound in P . We
have three new interaction transitions, according to whether the output or input
or both are replicated:

u:
F

!out(x).P
iny.Q;A

D
−→

u:
F

!out(x).P
A
x′ y;

P{x′
/x};Q;D

(|x′|):
−

−

−
x′ fresh (int.rep.out)

u:
F

outx.P
!in(y).Q;A

D
−→

u:
F

!in(y).Q
A

x y′;P ;
Q{y′

/y};D

(|y′|):
−

−

−
y′ fresh (int.rep.in)

u:
F

!out(x).P
!in(y).Q;A

D
−→

u:
F

!out(x).P
!in(y).Q;A

x′ y′;P{x′
/x};

Q{y′
/y};D

(|x′|):
−

−

−

(|y′|):
−

−

−
x′,y′ fresh (int.rep.both)

Although the transitions look complicated, they can be understood quite simply.
Each one is an interaction in the style of (interact). But if an atom is replicated,
then it is not consumed by the interaction, and is instead kept. If any names
are restricted in the replication, then they are created fresh in the same way as
(dep.new).

It is unfortunate to have to combine so many features—interaction, duplica-
tion, restriction—into a single command such as !u(x).P . Indeed, the pi calculus
and the explicit fusion calculus manage to treat each feature separately. For ex-
ample, in !(x)ux.P ≡ (x)ux.P | !(x)ux.P , the structural congruence performs
the duplication; and restriction and interaction can then be handled separately
in the normal way. But it is not possible to implement this structural congru-
ence rule as a transition u:[−,−, !P] −→ u:[−,−, P ; !P], since this transition
would allow for an unlimited number of copies to be made.

It is standard instead to use only guarded replication: i.e. replication of the
form !(x̃)µỹ.P . The copies can then be created only on demand. It is because

CHAPTER 5. FUSION MACHINE 87

of this that we must combine the features into a single transition rule. In fact,
we have used an even simpler form, where the same names are restricted (x̃) as
communicated (ỹ). This simplicity does not come at the expense of generality.
For consider the general form !(xz)µzy.P , in which some names are restricted
that are not communicated, and some are communicated that are not restricted.
This is equivalent to !(z′y)µz′y.(x)(z z′ | P). Other authors simplify still further
by disallowing replicated output

u:
F

A

!(x)vx.P ;D

v:
F ′

A′

D′

−→

u:
F

A

D

v:
F ′

!out(x).P
A′

D′

(dep.rep.out)

u:
F

A

!(x)vx.P ;D

v:
F ′

A′

D′

−→

u:
F

A

D

v:
F ′

!in(x).P
A′

D′

(dep.rep.in)

These two transitions are for the deployment of replicated input and output
commands. One might also add a transition for the deployment of replicated
bound input, so that the machine can execute a pi calculus term directly, but
we omit it here.

As an example of replication, we illustrate the following execution.

uy | uz | !(x)ux.x.P −→ uz | !(x)ux.x.P | y.P{y/x}
−→ !(x)ux.x.P | y.P{y/x} | z.P{z/x}

In writing this example as a fusion machine, let y′ and z′ be fresh names, with
y′ < y and z′ < z. The machine is a little tedious to write out in full, so we use
the abbreviations P ′

y = P{y′
/x} and P ′

z = P{z′
/x}.

u:
−

outy outz
!in(x).x.P

−

y:
−

−

−

z:
−

−

−

int.rep.in−→

u:
−

outz
!in(x).x.P
y y′; y′.P ′

y

(|y′|):
−

−

−

y:
−

−

−

z:
−

−

−

CHAPTER 5. FUSION MACHINE 88

dep.fu.out−→−→

u:
−

outz
!in(x).x.P

(|y′|):
y

out.P ′
y

−

y:
−

−

−

z:
−

−

−

migrate−→

u:
−

outz
!in(x).x.P

(|y′|):
y

−

−

y:
−

out.P ′
y

−

z:
−

−

−

int.rep.int−→

u:
−

!in(x).x.P

z z′; z′.P ′
z

(|y′|):
y

−

−

y:
−

out.P ′
y

−

(|z′|):
−

−

−

z:
−

−

−

dep.fu.out−→−→

u:
−

!in(x).x.P

(|y′|):
y

−

y:
−

out.P ′
y

−

(|z′|):
z

out.P ′
z

−

z:
−

−

−

migrate−→

u:
−

!in(x).x.P

(|y′|):
y

−

−

y:
−

out.P ′
y

−

(|z′|):
z

−

−

z:
−

out.P ′
z

−

Note that the channels y′ and z′ were created fresh. We therefore know that no
one else has a reference to them, and so they can be garbage-collected.

One particular optimisation is apparent in this example. Rather than cre-
ating a local channel y′ and then migrating things from y′ to y, we could in-
stead just send them directly to y. This amounts to an immediate substitution
uy | !u(x).P −→ P{y/x} in the style of the pi calculus, rather than delayed
substitution in the style of the explicit fusion calculus. However, note that we
cannot wholly dispense with delayed substitution: it is still needed for fragmen-
tation, as explained in Section 1.4 (page 12). In effect, while the pi calculus is a
special (and probably common) case, the explicit fusion calculus is the general
case.

5.5 Co-location

Suppose that two channel-managers happen to reside at the same location—in
particular, that they share an address space. Perhaps they are both running on

CHAPTER 5. FUSION MACHINE 89

a single user’s desktop computer. Two optimisations are possible, to do with
migration and threads of execution.

Let us draw co-located channel-managers as physically adjacent:

u:
F

A

D

v:
F ′

A′

D′

The first optimisation concerns the case that u is fused to v (or vice versa):
we can migrate all atoms from u to v in constant time. To achieve this, let
both collections of atoms—output and input—be stored as linked lists with tail
pointers. Then to splice u’s list onto the end of v’s list is easy: just make the
previous tail of v point to the head of u, and make the new tail of v point to
the tail of u. The transition for constant-time migration is as follows:

u:
v

A

D

v:
F ′

A′

D′

−→

u:
v

−

D

v:
F ′

A;A′

D′

(migrate.at)

We use this form of constant-time migration in the following chapter to prove
that the encoding of fragmentation in the explicit fusion calculus does not cost
extra inter-location messages.

The second optimisation concerns threads of execution. If there are several
channels at the same physical location, then we no longer need a separate thread
of execution for each. A single thread might handle all the channels in round-
robin fashion. Indeed, we can even spawn new threads to handle some of the
channels, or retire threads, at will. This might be particularly useful in a mixed-
language environment: In a program such as ux.C, perhaps the code C is very
slow and should be run in a new thread so that other interactions can continue;
or perhaps it is a blocking operating system call and so requires its own thread.

Consider the degenerate case of a non-distributed machine which has all
its channels in the same physical location. If we use just a single thread of
execution, in round-robin fashion, then the machine becomes substantially the
same as the uniprocessor implementation (Section 1.3, page 10). The advantage
of the fusion machine is that it can scale easily to multiple threads on a single
system, and distributed systems; the uniprocessor machine is not scalable.

We now address the question of how co-location might be programmed, and
next how it should be implemented. Presumably, the programmer would wish
to decide the location of some channel. The obvious time to do this is at the time
the channel is created: i.e. the restriction command. To this end we augment
the explicit fusion calculus with a new kind of restriction, located restriction,
written (x@y)P . This is to indicate that the new channel x should be created
physically adjacent to y. The deployment transition for located restriction is as

CHAPTER 5. FUSION MACHINE 90

follows.

u:
F

A

(x@y)P ;D

y:
F ′

A′

D′

−→

u:
F

A

P{x′
/x};D

(|x′|):
−

−

−

y:
F ′

A′

D′

(dep.new.at)

This location command is the only one treated formally in the following
section. However, it is inadequate to express one useful programming idiom.
Say we have a program (x)ux.P | uy | uz, and we wish the fresh name x to be
located next to either y or z depending on which reaction happened. That is, if
the reaction involved uy then the result will be (x@y)(x y | P) | uz; and if the
reaction involved uz then the result will be (x@z)(x z | P) | uy. The decision as
to the location of x cannot be made until the the time of the interaction. For an
example application which needs this sort of delayed decision, consider a mobile
agent. Say the agent receives a request, and then migrates to the originator
of that request to deliver the answer in person. But it cannot know where to
migrate, until after it has received the request.

Located restriction as described above only allows a decision to be made
before interaction. Therefore it is not suitable for the mobile agent. Instead, we
need a special form of command where interaction and located-name-creation
happen at the same moment. So, we also add located bound input u(x@).P to
the calculus. This means that, upon reaction with some uy.Q, the new channel
x should be created at the same location as y. The corresponding atom in
the machine is in(x@).P . The two additional transitions are as follows—one to
deploy the bound input command, and one to interact with it.

u:
F

A

v(x@).P ;D

v:
F ′

A′

D′

−→

u:
F

A

D

v:
F ′

in(x@).P
A′

D′

(dep.bound.at)

u:
F

in(x@).P
outy;A
D

y:
F ′

A′

D′

−→

u:
F

A

P{x′
/x};D

(|x′|):
−

−

−

y:
F ′

A′

D′

(interact.at)

The symmetric extension to located bound output is obvious, so we omit it.
We illustrate the execution of located bound input with the example

u(x@).x | uy.y −→ (x@y)(x y | x | y) −→ (x@y)(0).

Let x′ be fresh, with x′ < y.

u:
−

outy.y
in(x@).x

−

y:
−

−

−

int.in.at−→

u:
−

−

x′ y; y;x′

(|x′|):
−

−

−

y:
−

−

−

CHAPTER 5. FUSION MACHINE 91

dep.fu−→

u:
−

−

y;x′

(|x′|):
y

−

−

y:
−

−

−

dep.in.out−→−→

u:
−

−

−

(|x′|):
y

out

−

y:
−

in

−

migrate.at−→

u:
−

−

−

(|x′|):
y

−

−

y:
−
out
in
−

interact−→

u:
−

−

−

(|x′|):
y

−

−

y:
−

−

−

Observe that, in this example, no atoms migrate to the channel x′ until after
it has been created. This might seem trivial, but in fact it is not. Let us spell
out the chain of dependencies: before u can send anything from its deployment
area, it must first perform the substitution {x′

/x}; and it cannot perform the
substitution until it knows the name x′; and it cannot know the channel-name
x′ until that channel has been created. The question is who should create x′?
More precisely, who should generate the globally unique identifier x′? And who
should allocate storage space and create a thread of execution for it?

The obvious answer is that, since x′ will be at the same location as y, it
should be created by y. But this is undesirable because it would involve hand-
shaking: u would have to send a message to y asking it to create a new channel,
and then y would create the channel and send back a message to announce the
channel’s name.

However, we can avoid handshaking if we suppose that u is able locally to
create fresh unique identifier x′, even though x′ will be co-located with y. This
is possible if each name is tagged with the location that created it (in this case,
u) and a time-stamp. Then, each migrating atom can be sent from u to y with
a short note: ‘Please actually place me in x′, not y; and if x′ has not yet been
created, then create it’. I call this lazy channel creation. The ability to locally
create identifiers that are globally unique is a useful one in practice. There is an
international standard for globally unique identifiers, detailed in [27, 36]. This
standard was actually invented to support various different aspects of remote
procedure calls—which are a form of synchronous rendezvous.

CHAPTER 5. FUSION MACHINE 92

5.6 Fairness and failure

Fairness means that things ready to interact do not get starved of interaction.
We define atomic fairness as follows: if it remains perpetually possible for an
atom to interact, then eventually it will. That is, if some atom always has
some complementary atom in the same equivalence class, then eventually it
will interact. We can accomplish this within a channel-manager by keeping
input atoms in a queue, and output atoms in a queue. The heads of each
queue interact. After reaction, if either were replicated, they are sent to the
back of the queue. However, this scheme alone does not guarantee fairness
across fused channel-managers: it allows two replicated terms !x | !x to interact
indefinitely, even in the presence of a forwarder from x to y and another term
y.P . In this case the y.P would stay starved of interaction, even though atomic
fairness requires that eventually it will interact. One way to guarantee atomic
fairness is to suppress interaction when migration or deployment is possible.
This then yields the same fairness property as Pierce and Turner’s uniprocessor
implementation [56].

It is more conventional to describe the fairness of transitions rather than
atoms. Strong fairness is the property that, if it remains persistently possible
for a transition to happen, then eventually it will. (Also, weak fairness is the
property that, if it is possible infinitely often for a transition to happen, then
eventually it will.) For example, consider the program !u.P | !u.Q | !u.R | !u.S.
If every transition were stipulated as strongly fair, then each of the reactions
(P,Q), (P, S), (Q,R), (R,S) must happen infinitely often. But the scheme
described in the previous paragraph would only result in (P,Q) and (R,S) being
executed, never (P, S) or (Q,R). It is not clear how to implement transition-
based fairness in the fusion machine. It is not even clear that it should be
implemented: in a real program, the programmer might wish for arbitrarily
complicated fairness criteria. The implementation should provide useful and
simple primitives, and leave to the programmer to implement anything more
complicated.

There is more work to be done on fairness for the pi calculus. All authors
on pi calculus implementation, myself included, mention it as an issue and then
fail to develop any substantial theory. But it should not be so hard. The
standard reference on fairness is the book Temporal Verification of Reactive
Systems by Manna and Pnueli [39]. They describe how to turn any temporal
formula—perhaps a fairness formula—into a finite transition graph. We can
then cross this with the transition graph representing our program, and read
fairness properties directly off the resulting graph. I leave this for future work.

Failure. Distributed systems have been jokingly defined by Lamport as ones in
which ‘the failure of a computer you didn’t even know existed can render your
own computer unusable’. We need our programs to recover gracefully in the
presence of failure. There are three parts to this task: we need a model for the
sort of failures that will occur in the fusion machine; we need the explicit fusion
calculus to be able to express the state of the machine after failure; and we
need some mechanism by which a program can be informed about the failure.
The second part is already satisfied by the explicit fusion calculus, since every
transition in the fusion machine corresponds to an atomic step in the calculus.

As for modelling the sort of failures that occur, this depends on the intended

CHAPTER 5. FUSION MACHINE 93

use of the fusion machine. If it is used at a lower level, perhaps to implement
the Internet Protocol, the typical mode of failure is that a message is lost in
transit. This can happen whenever the message passes through a congested
part of the network. However, most applications use the higher-level Transport
Communication Protocol (TCP). This ensures reliable delivery of messages, so
the typical mode of failure is for a message simply to be undeliverable: perhaps
the destination machine is switched off, disconnected or crashed. If the fusion
machine is used in a single machine, then message delivery is also reliable, and
failure typically happens because the destination program is not expecting a
message, or not executing.

The effect of message loss is clear in the machine. And at the calculus level,
the effect of message loss is that a term simply vanishes. Berger and Honda [6]
have shown how to recover from message loss through adding timing commands.
Perhaps their techniques can be extended to the fusion machine. The effect of
undeliverable messages is also clear in the machine: a transition simply does
not happen. I do not know how best to recover from this at the calculus level.
Perhaps each fragment in a channel should be associated with an error-handler,
to be invoked upon a failed attempt to deploy or migrate that fragment.

The failure of channel-managers is also relevant for a program’s robustness.
Consider a collection of channel managers which, through their fusion pointers,
denote a tree. If any single channel manager fails, then all its children will be
unable to refer to the root of the tree. Perhaps this fragility could be solved by
using not a tree of forwarders, but rather some structure with more redundancy.
Leth and Thomsen, for instance, describe a version of Facile with multiple copies
of each channel-manager [38].

Efficiency and failure-safety are in opposition. An efficient concurrent sys-
tem allows many fragments to execute in parallel, even allowing subsequent
commands to start executing before the first has completely finished. A failsafe
system, on the other hand, must prevent subsequent operation if the first com-
mand failed. The same conflicting requirements have been encountered—and
to some extent solved—in CPU design and in databases. A CPU, for instance,
typically handles up to a hundred instructions at the same time, and aborts
them all if an error is found. Perhaps the work in these fields might indicate
how best to add efficient failure-safety to the pi calculus and explicit fusion
calculus.

Conclusions. In this chapter we have seen how the fusion machine works.
It uses interaction, migration and deployment: interaction to create fusions,
migration to use them, and deployment to interpret commands in the calculus
and also to manage trees of fusions. We have also seen how co-location allows
for greater efficiency.

It may already be obvious to some readers that the fusion machine really
does implement the explicit fusion calculus and pi calculus correctly, and that
co-location really does help. The following chapter gives a formal proof of these
two facts.

Chapter 6

Theory of fusion machine

The fusion machine is a distributed implementation of the explicit fusion cal-
culus and of the pi calculus. This chapter proves it is a correct and efficient
implementation.

The first task is to give a formal algebra for the machine. An unfortunate
consequence of the formalism is that it is less approachable than the diagrams of
the previous chapter, and we must spend some initial effort to prove properties
about the formalism itself rather than the machine. The reward of the formalism
is that, through the detailed proofs, we will learn things about the machine that
are not so apparent from the diagrams: which invariants are satisfied by the
tree structure; what a machine context is; how the structural congruence of the
calculus is implemented in the machine. The plan of the chapter is as follows:

6.1 Overview. This chapter introduces some new techniques, and extends con-
ventional techniques in new ways. The first section provides an overview
of the new techniques.

6.2 The machine calculus. We give an algebraic description of the machine:
its syntax, transitions and observation relation. We define a barbed bi-
simulation that is strong with respect to interaction transitions, and weak
with respect to deployment and migration transitions.

6.3 Correctness for the explicit fusion calculus. We prove that the machine
is a sound and complete (‘fully abstract’) implementation of the explicit
fusion calculus: no matter which other programs are also executing, two
programs will have the same behaviour in the machine if and only if they
are barbed congruent in the calculus.

6.4 Correctness for the pi calculus. We prove that the machine is also a sound
implementation of the pi calculus. This largely follows from the previous
section and Chapter 4.

6.5 The located machine. In this section we augment the syntax to include in-
formation about co-location. Using this we give a costed reaction relation
to account for the cost of each message.

6.5 Flattening. A program can be made efficient by fragmenting it and pre-
deploying those fragments. A flattening is a complete fragmentation down

94

CHAPTER 6. FUSION MACHINE THEORY 95

to the level of individual input and output commands. We give a flattening
and prove it correct with respect to strong bisimulation congruence.

6.6 Efficiency of flattening. The flattening given in Section 6.5 is efficient:
it requires no additional messages. We also study the efficiency of the
flattening given by Laneve and Victor [34].

6.1 Overview

This chapter gives a formal calculus for the fusion machine, and proves its
correctness and efficiency. Much of the work in this chapter covers new ground.
I have therefore had to invent new techniques, and adapt existing techniques in
unusual ways. This section outlines the techniques.

Machine calculus. The formal calculus we give for the fusion machine lies
part way between the diagrams from the previous chapter, and the explicit
fusion calculus. We will not prove that the fusion machine calculus corresponds
to the diagrams: this should be obvious, since the two are so similar. But we
will prove that the fusion machine calculus corresponds to the explicit fusion
calculus; and the similarity between the two will allow for easier proofs. Let us
now consider the differences between the machine and the calculus.

Restriction is the first major difference. The fusion machine itself does not
need restriction: restriction is just a (theoretical) model for the (practical) use
of fresh names. As discussed in the previous chapter (Section 5.2, page 81), most
of the roles of restriction in the calculus are not needed in an implementation:
there is no need for alpha-renaming, or scope-extrusion, or avoiding clashes
when composing two fusion machines in parallel.

The final use of restriction is to help define an observation relation, for
purposes of judging program equivalence. But here it is merely a convenience,
not a necessity. In particular, while it is necessary for equivalence to have
restrictions in programs, it is not necessary to have restriction in the machine
contexts which surround these programs.

For consider two programs in the explicit fusion calculus (u)(u.x | u) and
(v)(v.x | v). These are equivalent, since the channels u and v are local. More-
over, they are equivalent in all contexts, even in a context E = | u, since the
context cannot react with the local channels. Were they to lack their restric-
tions, they would no longer be equivalent in that context. This is why restriction
within a program is a necessary part of program equivalence.

However, the restriction is only necessary on the inside of contexts, in the
programs P , and is not needed in the contexts. For let us consider one set of
contexts Er which has restriction, and another set E6r which does not. Given
any program P whose contextual equivalence we are judging, and any example
context E ∈ Er, we can construct an equivalent context E′ ∈ E 6r simply by
replacing all restricted names with fresh names. Therefore, contexts E6r without
restriction are no less discriminating than contexts Er with restriction.

Although restrictions are not needed in contexts, and hence not needed in
the machine, we will introduce a particular form of restriction in the fusion
machine for convenience. We will write (|x|) to indicate that the name x is not
listed in the central registry of free names: therefore it cannot be observed,

CHAPTER 6. FUSION MACHINE THEORY 96

and is not part of the observation relation. This makes for a straightforward
connection with the calculus. Note that it does not allow alpha-renaming or
scope extrusion like normal restriction. An alternative, avoiding all forms of
restriction in the machine but at the cost of complexity, would have been to
work with contextual equivalence rather than barbed congruence.

Counting transitions is the second major difference between the machine
and the calculus. The transitions of the fusion machine divide into two groups,
which we distinguish with the annotations τ−→ and ≡−→.

• τ−→, comprising the interaction transitions. These correspond to interac-
tion steps in the calculus.

• ≡−→, comprising the migration and deployment transitions. These corre-
spond to structural congruence in the calculus.

In the calculus, strong bisimulation counts the number of interaction steps but
not the number of structural congruence steps. Therefore, in proving the ma-
chine correct with respect to the calculus, we introduce a form of bisimulation
which counts in the same way (Section 6.4). One might say that this is a
‘strong-weak’ bisimulation—strong with respect to τ−→, and weak with respect
to ≡−→.

But when proving efficiency properties of the machine, we will be concerned
with the number of inter-location messages, not with the number of interactions.
The two are almost opposites: interaction steps are all local, and structural
congruence steps generally cost a message. To count the number of messages,
we introduce a different annotation on transitions:

• −→0, comprising those transitions that can be accomplished without any
inter-location messages.

• −→1, comprising those transitions that require an inter-location message.

The local transitions −→0 are essentially free. When proving the fusion machine
efficient, we will count the number of messages using the costed transitions
(Section 6.10). Strictly speaking, we should be concerned about the size as well
as the number of messages. However, the efficiency results in this chapter only
use fixed-sized messages, so we ignore size.

Replication is the third difference between machine and calculus. The ex-
plicit fusion calculus has arbitrary replication !P , where P may be term in the
calculus. But this is awkward to implement. Following Pierce and Turner [56],
we instead consider only guarded replication !(x̃)µx̃.P .

Dangling pointers are the fourth difference. The calculus never explicitly
states which channel-managers exist, but instead assumes that they all do. But
in an implementation, a program could not refer by name to a remote channel-
manager unless that channel-manager had already been created; and a reaction
would fail unless that remote channel-manager still exists. As a simplification,
we consider only complete machines in which all named channel-managers exist.
Equivalently, we say that there are no dangling pointers to non-existent channel-
managers. As an example, the machine c:[u] has a dangling pointer to u, but
the machine c:[u], u:[] has no dangling pointers.

These four points—restriction, counting transitions, replication and dangling
pointers—constitute the chief differences between the explicit fusion calculus
and the fusion machine calculus.

CHAPTER 6. FUSION MACHINE THEORY 97

Location. We introduce a location assumption L, and a costed transition re-
lation L `M −→i M ′. This means: given the assumptions L about co-location,
it takes i inter-location messages for M to evolve into M ′.

It is unusual to separate out the co-location information from the syntax of
machines in this way. More commonly, as in Distributed Pi [57] and Located
Pi [5] and the Ambient Calculus [10], the location is written as part of the
syntax. For instance, n[x.P, y.Q] might indicate that terms x.P and y.Q are
together at location n. But the advantage of separating out the co-location
information is that we do not need to modify the grammar of the calculus, do
not need to invent a class of things n called ‘locations’, and do not need to
invent new transition rules to deal with locations.

In the fusion machine, co-location never changes: if two channel-managers
were co-located at the start of execution, then they will be at the end. This
is represented by writing the location assumptions L outside the entire reac-
tion M −→i M ′. Additionally, so that L can remain static rather than being
required to grow, we take it to be an infinite equivalence class of all potential
located channel-managers—rather than a finite equivalence class of the channel-
managers that have so far been created.

A simplifying factor comes from the fact that all channel-managers are cre-
ated fresh and unique. This means that alpha-renaming is not used, and there
is no need to worry about renaming L.

Semantics. The machine provides an operational semantics for the explicit
fusion calculus and the pi calculus. That is to say: a term in the calculus is
merely a string of symbols. When we say that the string of symbols is a term
in the calculus, we only refer to its syntax and not to it’s meaning. There are
different ways to give these symbols meaning. One way is through structural
congruence, a reduction relation, and barbed bisimulation. Another way is
through a labelled transition system and ground bisimulation. The third way,
at a lower-level, is through the transitions and equivalence of the machine—in
the same way that Landin’s SECD machine provides a low-level operational
semantics for the lambda calculus.

This discussion may seem obvious, but it leads to an unusual form of context
for the machine. We are interested in machine contexts because it is practically
useful to say that two programs are equivalent in all machine contexts. But the
programs that go into these contexts are terms from the calculus rather than
machines. We are therefore interested in the following correctness statement:
Two programs are equivalent in all calculus contexts according to calculus se-
mantics if and only if they are equivalent in all machine contexts according to
machine semantics.

From the programmer’s perspective we are also interested in a second cor-
rectness statement: The observations and transitions of the machine are the
same as the observations and transitions of the calculus. This means that the
programmer can watch a machine execute, and relate it directly to how the
program is expected to execute.

Some readers may find our treatment unfamiliar, preferring instead to in-
vent some translation (·)∗ from one system (the calculus) to another system
(the machine) and then proving that this translation preserves bisimulation. In
this case, the second correctness statement would amount to saying that the

CHAPTER 6. FUSION MACHINE THEORY 98

translation has all the properties of a bisimulation. Often, one would also hope
that the translation is compositional, so that parallel composition in the cal-
culus corresponds to parallel composition in the machine, and prefixing in the
calculus to prefixing in the machine. But prefixing does not make sense as an
operation on machines. Also, this approach still leaves the problem of how to
implement the translation. Note for comparison that the SECD machine does
not operate upon a translation of lambda terms, but rather upon lambda terms
themselves.

Contexts. We said that if two programs (as strings of symbols) are judged
equivalent by the calculus semantics, then they will be behave in the same way
when placed in any machine contexts. For instance, a vendor might prove a
program correct, and then sell its source code. But an additional, stronger
correctness property would be useful: the vendor might like to partially execute
the program, and sell it in a ‘ready-deployed’ form. We therefore need to know
not just that two programs behave the same when placed in machine contexts,
but also that any deployment of the programs will also be equivalent.

It is technically awkward to express formally this additional property. We
need additional machine contexts which admit machines in their holes, rather
than programs. But we also need to be able to write contexts such that the
context provides some of the atoms for a particular channel-manager, and the
machine in its hole provides others. In effect, given the context Em = u:[B1],
and the machine M = u:[B2] we need Em[M] = u:[B1, B2]. To express this fact,
while keeping contexts compositional, we need a form of ‘disassociated syntax’
which allows u:[B1], u:[B2] ≡ u:[B1, B2]. This whole exercise costs substantial
technical complexity for little reward. It also obscures the connection between
the machine calculus and the machine diagrams. I have therefore removed it
from this chapter.

Mathematically, this issue relates to the sort of congruence results we obtain.
Since we have not defined contexts on machines, we cannot use the stronger
reduction-closed version of congruence for the machine:

• Two machines are congruent if they have the same behaviour in all con-
texts; moreover, after a step of execution, the results will also be congru-
ent.

Instead, our simplification forces us to use shallow congruence in the machine;
we will relate it to shallow congruence in the explicit fusion calculus. The
machine’s shallow congruence is as follows:

• If two programs are equivalent then, no matter what context they are
placed in, they will have the same behaviour.

6.2 The machine calculus

We assume that the set N of names has a total order. Let m range over {out, in}.
Let p, q range over {0} ∪ N , denoting pointers which may be nil. Following
Section 5.4, let P range over terms in the explicit fusion calculus which use only
guarded replication: thus, all replicated terms !P are assumed to have the form
!(x̃)µx̃.P ′ with x̃ 6∈ µ. So as to make some rules simpler, we adopt the notation
that uout and uin stand for u and u.

CHAPTER 6. FUSION MACHINE THEORY 99

Definition 69 (Fusion machine) The set M of fusion machines, ranged over
by M , is given by

M ::= (|x̃|)C (fusion machine)
C ::= 0

∣∣ xp:[B]
∣∣ C,C (channel-managers)

B ::= 0
∣∣ mx̃.P

∣∣ !m(x̃).P
∣∣ P

∣∣ B|B (bodies)

The basic machine xp:[B] denotes a channel-manager at channel x containing
body B and with fusion-pointer p. The privacy list (|x̃|) is a set of distinct
channel-names which are not observable from outside the machine. We omit the
fusion-pointer x:[B] to stand for a machine with some unspecified fusion pointer:
either xy:[B] or x0:[B]. We write x:[] for x:[0], and x̃:[B] for x1:[B], . . . xn:[B].
We write the empty privacy list (| |)C as just C.

The body inside a machine is an unordered collection of basic atoms mx̃.P ,
replicated atoms !m(x̃).P and terms P . In the fusion machine calculus, the body
combines the ‘atoms’ and the ‘deployment area’ given in the machine diagrams
from the previous chapter. Note that all fusions x y are already ranged over by
terms P . By an abuse of notation, we also allow terms P to range over fusions
x p that include a possible-nil name.

In the previous chapter we had assumed it possible to pick an arbitrary ele-
ment from the various collections—input atoms, output atoms and deployment
terms. In this chapter they are all written together in the body, and we use
the pattern-matching properties of a term rewriting system to pick arbitrary
elements of different types.

We make a pun between operators on terms and operators on bodies: the
expression P | Q is taken as a pair of terms in the body, rather than a single
term. Similarly, in x:[0], we take the 0 to refer to a nil body rather than a
nil term. As justification, we might say that all calculus terms have been pre-
compiled into bodies. It would have been possible to use a separate notation
|b and 0b for the body operators, and to have the computational steps dep.par
and dep.nil as in Section 5.3 (page 83), but this would cost clarity for no gain.

Well-formedness. There are two well-formedness conditions on machines.
First, recall from the previous chapter that there is exactly one channel-manager
per channel. In the calculus, we say that a machine is singly-defined when it
satisfies this condition. Formally, define

chanx:[B] = x chanC1, C2 = chanC1 ∪ chanC2

and say that C1, C2 is singly-defined if and only if chanC1 ∩ chanC2 = ∅.
Second, it does not make sense to write a program that refers to a machine

which does not exist. Say that a machine is complete when it has no such
‘dangling pointers’. Formally, define

ptrxy:[B] = y ∪ ptrB ptr mx̃.P = x̃ ∪ fnP
ptrx0:[B] = ptrB ptr !m(x̃).P = fn(x̃)P
ptrC1, C2 = ptrC1 ∪ ptrC2 ptrP = fnP

ptrB1|B2 = ptrB1 ∪ ptrB2

CHAPTER 6. FUSION MACHINE THEORY 100

and say that a machine (|x̃|)C is complete if and only if ptrC ⊆ chanC and
x̃ ⊆ chanC. A machine is well-formed when it is both singly-defined and
complete. In the following, we consider only well-formed machines.

We will use a structural congruence to identify terms that have the same physical
structure: for instance, C1, C2 ≡ C2, C1. This is to bridge the gap between
syntax and implementation: although in the implementation there is no inherent
order on a collection of machines or their bodies, a linear syntax does have an
order. The structural congruence abstracts away from this detail of the syntax.

Definition 70 The structural congruence ≡ between machines is the least con-
gruence satisfying the following laws on channel-managers and bodies:

1. Abelian monoid laws with 0 as identity
C,0 ≡ C C1, C2 ≡ C2, C1 C1, (C2, C3) ≡ (C1, C2), C3

B | 0 ≡ B B1 | B2 ≡ B2 | B1 B1 | (B2 | B3) ≡ (B1 | B2) | B3

2. fusion laws on atoms
x x ≡ 0 x 0 ≡ 0 x y ≡ y x.

The fusion laws have been added just as a shorthand for use in the (dep.fu)
transition below. This transition only fuses from the lesser name to the greater,
and it discards the resulting fusions if they are empty. Using the fusion laws,
we will be able to write the fusion transition more simply. The fusion laws can
be easily be implemented as part of that transition.

Note that ≡ is not congruential with respect to structural congruence on
terms in the explicit fusion calculus. That is to say: given P ≡ Q in the
calculus, we cannot deduce that x:[P] ≡ x:[Q] as the machine. After all, the
point of the machine is to show how to implement the calculus in small, easily
programmable steps—including how to implement the structural congruence—
and structural congruence in the calculus is not easily programmable. (It is not
even known whether structural congruence is decidable. However, Engelfriet
and Gelsema have at least shown for the pi calculus that structural congruence
becomes decidable with the addition of some axioms [15]).

It is easy to show that all rules in the structural congruence preserve well-
formedness.

In giving the transition relation, we implicitly assume further bodies in channel-
managers. In other words, we omit the bodies in channel-managers which are
not changed by the presented rule. For instance, the verbose form of the (mi-
grate) rule is

uv:[mx̃.P | B1], v:[B2] −→ uv:[B1], v:[mx̃.P,B2],

but we will present it as just

uv:[mx̃.P], v:[] −→ uv:[], v:[mx̃.P].

This convention allows us to focus on the interesting parts of the rules. It is a
standard convention in work on the Join calculus [17].

CHAPTER 6. FUSION MACHINE THEORY 101

Definition 71 The transition relation −→ between well-formed machines is the
smallest relation satisfying the rules below, and closed with respect to structural
congruence. A name is fresh with respect to a machine (|x̃|)C when it is not in
x̃ or chanC. In the following rules we take x̃′ and ỹ′ to be fresh and use the
abbreviations P ′ = P{x̃′

/̃x} and Q′ = Q{ỹ′
/̃y}.

u:[outx̃.P | inỹ.Q] −→ u:[x̃ ỹ | P | Q] (int)
u:[!out(x̃).P | inỹ.Q] −→ (|x̃′|) u:[x̃′ ỹ | P ′ | Q | !out(x̃).P], x̃′0:[] (int.rout)
u:[outx̃.P | !in(ỹ).Q] −→ (|ỹ′|) u:[x̃ ỹ′ | P | Q′ | !in(ỹ).Q], ỹ′0:[] (int.rin)

u:[!out(x̃).P | !in(ỹ).Q] −→ (int.both)
(|x̃′ỹ′|) u:[x̃′ ỹ′ | P ′ | Q′ | !out(x̃).P | !in(ỹ).Q], x̃′0ỹ

′
0:[]

uv:[mx̃.P], v:[] −→ uv:[], v:[mx̃.P] (migrate)
uv:[!m(x̃).P], v:[] −→ uv:[], v:[!m(x̃).P] (migrate.rep)

u:[x y], xq:[] −→ u:[] xy:[y q], if x < y (dep.fu)
u:[(x̃)P] −→ (|x̃′|) u:[P ′], x̃′:[] (dep.new)

u:[vmx̃.P], v:[] −→ u:[], v:[mx̃.P] (dep.action)
u:[!vm(x̃).P], v:[] −→ u:[], v:[!m(x̃).P] (dep.rep.action)

For every transition rule above, we close it under contexts:

C −→ (|x̃|) C ′ chanC2 ∩ chanC ′ = ∅
(|ỹ|) C,C2 −→ (|x̃ỹ|) C ′, C2

Let τ−→ range over (int) rules, and ≡−→ over the others.

All transition rules preserve well-formedness. In respect of this, note that
(dep.new) and the replicated interaction rules create fresh, empty channel-
managers so as to preserve completeness. Meanwhile, the side-condition on the
context closure rule ensures that all names are singly-defined—in other words,
the freshly created names will be globally unique. This is different from context-
closure in explicit fusion calculus, where the names are local but not necessarily
unique. This is why the explicit fusion calculus needs alpha-renaming, but the
fusion machine does not.

The rules have all been explained in the previous chapter. The most subtle
rule is (dep.fu). As was explained, this rule leads to a tree structure of fusion
pointers. We now explain the tree structure formally. To this end we use two
relations concerning the trees. First, x ; y means that there is a forwarding
path from x to y. Second, x ;= y means that x and y are on the same tree:
hence, two complementary atoms at x and y respectively can migrate to a
common name z and then react.

Definition 72 The relation ; on names, for a given machine (|x̃|)C, is the least
transitive relation satisfying

• xy:[B] ∈ C implies x ; y.

The relation ;= on names is the least relation on names satisfying

CHAPTER 6. FUSION MACHINE THEORY 102

• x
;= y if there exists a z such that x ; z ∨ x = z, and y ; z ∨ y = z.

Note that this relation is concerned only with the structure of the tree inside
the machine, regardless of which names (|x̃|) are hidden from observers. Clearly,
x ; y if and only if atoms can migrate from x to y. The relation ; also
has a correctness invariant. Basically, the relation is a tree (i.e. no loops, no
divergence) which respects the total order > on names. Formally:

Lemma 73 The following properties hold for a machine c:[P] where c is any
name and P is any program. The properties are also preserved by transitions.

1. (Anti-reflexive) For no x does x ; x.

2. (Anti-symmetric) x ; y and y ; x implies x = y.

3. (Transitive) x ; y and y ; z implies x ; z.

4. (Confluent) x ; y and x ; z implies y ; z or z ; y or y = z.

5. (Order-respecting) x ; y implies x < y.

Proof. Note that the only transition to modify fusion pointers, and hence the
only transition relevant to this proof, is (dep.fu). The side condition that x < y
means that x 6= y, so the result of the transition is anti-reflexive. It also means
that y 6; x, so adding x ; y does not break anti-symmetry. It also means that
x ; y is order-respecting. And transitivity and confluence are straightforward.

2

We will find it helpful to consider ‘fully-deployed’ machines, in which all
terms P inside the bodies have been fully deployed into atoms. This result is a
convenience: with it we will be able to analyse solely the tree structure, without
having to worry about fusions inside bodies.

Lemma 74 Given some machine M , there exists another machine M ′ such
that M ≡−→

∗
M ′ and M ′ contains only atoms inside its bodies; no terms.

Proof. Consider the total size of all terms inside all bodies. All of the deploy-
ment transitions apart from (dep.fu) strictly decrease the total size of terms in
the body. As for (dep.fu), it keeps the size constant until eventually it reaches
an un-fused machine, at which point it decreases the size. This will necessarily
eventually happen, since machines are finite and, by the anti-symmetry prop-
erty, there are no loops in the tree of fusion pointers. Finally, every term P in
a body admits at least one deployment transition. 2

6.3 Observation relation

We now introduce the observation relation on machines, and show that an atom
at some channel x may be observed at every y ;= x so long as y is not private.

Definition 75 The observation on machines is

(|x̃|)C
µ−→ if x̃ 6∈ µ and C

µ−→,

CHAPTER 6. FUSION MACHINE THEORY 103

where observation C
µ−→ on channel-managers is

u:[outx̃.P | B] u−→

u:[inx̃.P | B] u−→

u:[!out(x̃).P | B] u−→

u:[!in(x̃).P | B] u−→

uv:[B], C u−→ if C v−→

uv:[B], C u−→ if C v−→

C1, C2
µ−→ if C1

µ−→ or C2
µ−→

u:[B]
µ−→ if B ≡ B′ and u:[B′]

µ−→

The principle behind these relations is as follows. To make an observation
u−→, the observer notionally places a term u into the machine, and tests whether

the term reacts. So that the observer knows about the name u, it cannot be in
the private list. Once the test-term has been placed, there are three possibilities:

• (In place) Perhaps the machine at u already contains an input atom. Then
this can react immediately, and this reaction can be observed.

• (Down) Perhaps there is some machine v:[in] with v ; u. Then this atom
at v could migrate to u, and the ensuing reaction could be observed. We
will account for this through a form of weak bisimulation: to match one
machine’s observation, another machine is allowed to first perform some
migration steps.

• (Up) Perhaps there is some machine v:[in] with u ; v. Then the observe’s
test atom could migrate from u to v, and the ensuing reaction could be
observed. We account for this through the rules uv:[B], C u−→ if C v−→.

The following lemma characterises structurally the possible causes of an
observation C u−→.

Lemma 76 If a collection of channel-managers does u−→, then the collection is
in fact one of the following.

u:[B] with B ≡ outx̃.P | B′

u:[B] with B ≡ !out(x̃).P | B′

C1, C2 with C1
u−→ or C2

u−→

uv:[B], C with C
v−→

Similarly for u−→.

Proof. Note that the observation relation was defined inductively on the struc-
ture of machines: that is, although it involves a structural congruence on bod-
ies, it does not involve a structural congruence on machines. This means that
a straightforward induction on the derivation of C u−→ suffices to prove the
lemma. 2

CHAPTER 6. FUSION MACHINE THEORY 104

The following lemma relates the tree-structure of a machine, to its obser-
vations. We will use this result in the following section to prove the machine’s
correctness.

Lemma 77 If C x−→ and x ;= y, then C
≡−→

∗ y−→.

Proof. If C x−→ then (by Lemma 76) C contains some atom u [outz̃.P], perhaps
replicated, with x ; u or x = u. We will consider the more interesting case
that x 6= u. We are given that x ;= y: in other words, there exists some z such
that y ; z and also x ; z. But also x ; u. From the confluence property
(Lemma 73), there are three possibilities.

1. Perhaps z ; u. We also have y ; z; hence, by transitivity, y ; u.
Therefore C

y−→.

2. Perhaps u ; z. Therefore, C can undergo some migrations such that the
atom in ends up at z. But since we have y ; z, we get C ≡−→

∗ y−→.

3. Perhaps z = u. From y ; z we deduce y ; u. Therefore C
y−→. 2

6.4 Machine bisimulation

We now define bisimulation on machines. We also define the circumstances
under which two programs are judged equivalent in the machine.

As discussed in the introduction, part of our goal is to show how the machine
corresponds to the explicit fusion calculus. Now the machine’s ≡−→ transitions
show explicitly how to accomplish structural congruence, while the calculus sim-
ply assumes structural congruence. To prove the connection, we must therefore
not observe the ≡−→ transitions. As before, we write ≡−→

∗
to stand for a sequence

of zero or more ≡−→.

Definition 78 A barbed bisimulation S between machines is the least relation
such that if M S N then

• M
µ−→ implies N ≡−→

∗ µ−→

• N
µ−→ implies M ≡−→

∗ µ−→

• M
≡−→

∗ τ−→M ′ implies there exists N ′ such that N ≡−→
∗ τ−→ ≡−→

∗
N ′ and

M ′ S N ′

• N
≡−→

∗ τ−→ N ′ implies there exists M ′ such that M ≡−→
∗ τ−→ ≡−→

∗
M ′ and

M ′ S N ′

Let ·∼b, called barbed bisimulation, be the largest barbed bisimulation. It is easy
to check that ·∼b is an equivalence relation.

We now give contexts for the machine. Recall that Eφ ranges over explicit
fusion contexts (Definition 2, page 23). We will define Em to range over ma-
chine contexts. Note that the holes in these machine contexts admit calculus
programs, not other machines. That is because we are interested in how pro-
grams behave when placed in a machine, not how one machine behaves when
placed next to another machine.

CHAPTER 6. FUSION MACHINE THEORY 105

Definition 79 The set Em of machine contexts is given by

Em ::= (|x̃|)Ec
Ec ::= xp:[Eb]

∣∣ C,Ec
∣∣ Ec, C

Eb ::= mx̃.Eφ
∣∣ !m(x̃).Eφ

∣∣ Eφ
∣∣ B|Eb

∣∣ Eb|B

Again, we assume that Eφ uses only guarded replication. When we write a
machine Em[P], we implicitly assume it to be well-formed. When we write a
program in a basic context c0:[P], it is shorthand for the (complete) machine
c0:[P], x̃:[0] where x̃ = fn(P)\c.

We will say that the fusion machine semantics judge two programs equivalent
if those programs give rise to bisimilar machines when placed in any context.

Definition 80 (Machine equivalence) The relation ∼m between programs is
P ∼m Q iff ∀Em : Em[P] ·∼b Em[Q].

This machine equivalence is basically a shallow barbed congruence.

6.5 Correctness for the explicit fusion calculus

In this section we prove that the fusion machine is a correct implementation of
the explicit fusion calculus.

The first part is to prove that a term has the same barbs and transitions
when executed on a machine, as it does in the calculus: if P

µ−→ in the calculus,
then c0:[P]

µ−→ in the machine, and similarly for tau transitions. In practical
terms, this means that any two programs judged to be barbed bisimilar in the
calculus, will have the same behaviour when run (in isolation) on the machine.

The second part is to show that the machine semantics make the same judge-
ments about program equivalence, as do the explicit fusion calculus semantics:
P and Q are shallow barbed congruent in the calculus if and only if P ∼m Q.
In practical terms, any two programs judged to be congruent in the calculus,
will have the same behaviour when run within any context on the machine.

(Note that in Chapter 3, by contrast, we focused primarily on the stronger
reduction-closed barbed congruence. Recall from Section 6.1, however, that
the contexts we use in this chapter cannot be used to define reduction-closed
congruence. That is why this chapter uses shallow congruence.)

The proof works as follows. We are given some term P , and we consider the
reactions it can undergo. We must then show that the corresponding machine
can also undergo equivalent transitions. However, the task is a made complex
in two ways. First, there are more execution paths possible in the machine than
the calculus, involving more transitions. Second, a single term in the calculus
might be represented in multiple ways by different machines: for instance, x y
corresponds to xy:[] as well as u0:[x y].

There is a simple solution to this complexity: we give a translation from
machines into terms. In effect, we translate from the lower-level language (the
machines) into the higher-level language (the explicit fusion calculus). This
might seem surprising—after all, and in contrast, in Section 4.5 we translated
from the higher-level (pi calculus) to the lower (explicit fusion calculus). But,

CHAPTER 6. FUSION MACHINE THEORY 106

just as in that section, we will prove that the translation preserves barbs and
tau transitions in both directions, and so the direction of the translation does
not matter. Turner [68] also used a reverse translation to prove his uniprocessor
machine correct.

We actually use two subsidiary translation functions: one to translate a
machine into the calculus, keeping a note of all private names; and one to
translate bodies into the calculus.

Definition 81 The translation calc from machines to terms is

calc(|x̃|)C = (x̃) calcC

with the subsidiary translation calc from channel-managers to terms:

calc0 = 0

calcuv:[B] = u v | calcuB
calcu0:[B] = calcuB
calcC1, C2 = calcC1 | calcC2

and calcu from bodies to terms, parameterised on the name u:

calcu 0 = 0

calcu mx̃.P = umx̃.P

calcu !m(x̃).P = !(x̃′)umx̃′.P{x̃′
/̃x}, u 6∈ x̃′, x̃′ distinct, fresh

calcu P = P

calcuB1|B2 = calcuB1 | calcuB2

We now prove that
µ−→ observations and τ−→ transitions are the same be-

tween the calculus and the machine. This involves the subsidiary lemmas: first
that ≡−→ transitions in the machine really do correspond to ≡ in the calculus;
and second that barbs and observation are preserved.

Lemma 82

1. M ≡ N implies calcM ≡ calcN .

2. M ≡−→M ′ implies calcM ≡ calcM ′.

Proof. The first part is an induction on the derivation of M ≡ N . It uses the
auxiliary result that B1 ≡ B2 implies ∀x. calcxB1 ≡ calcxB2. The second
part is an induction on the derivation of the transition. It uses the fact that if
x 6∈ fn(B) and x 6= u then x 6∈ fn(calcuB). 2

Lemma 83

1. M
µ−→ implies calcM

µ−→

2. M τ−→M ′ implies calcM τ−→ calcM ′

CHAPTER 6. FUSION MACHINE THEORY 107

Proof. The first part is proved by a straightforward induction on the structure
of M using Lemma 76. We use the fact that P v−→ implies u v | P u−→. For
the second part, we use a straightforward induction on the derivation of M τ−→
M ′. There are four cases: interaction, equivalence (handled by Lemma 82),
congruence M,N and congruence (x)M . 2

Lemma 84

1. calcM
µ−→ implies M ≡−→

∗ µ−→

2. calcM τ−→ P ′ implies there exists M ′ such that M ≡−→
∗ τ−→ M ′ and

P ′ ≡ calcM ′

Proof. For the first part, suppose calcM u−→. There is (Lemma 74) an M ′

containing no terms in any of its bodies, and with all its restrictions pushed
fully out, such that M ≡−→

∗
M ′. Therefore (Lemma 82) calcM ≡ calcM ′, and

so calcM ′ µ−→. Now calcM ′ has the form (z̃)P , where all names z̃ are private in
the machine, and P contains only fusions and actions in direct correspondence
to the machine (Definition 81). If calcM ′ u−→, this must have come from some
action vz̃.Q with P ` u v (Proposition 25). This in turn must have come from
a channel-manager v:[inz̃.Q] with u ;= v. Therefore (Lemma 77) M ′ u−→.

For the second part, we again produce an M ′ which contains no terms in any
of its bodies such that M ≡−→

∗
M ′. Since calcM τ−→ P ′, and calcM ≡ calcM ′,

it must be that calcM ′ τ−→ P ′. Again, consider the form of calcM ′. It must
have some action ux̃.Q1, and another action vỹ.Q2, such that u and v are related
through fusions. Therefore, M ′ also has those actions, and u

;= v. Therefore
it is possible for the atoms in M ′ to migrate to a common point and react as
desired. 2

Corollary 85 (Bisimulation)

1. M ·∼b N if and only if calcM ·∼b calcN .

2. P ·∼b Q if and only if c0:[P] ·∼b c0:[Q].

We now extend the result to congruence: machine equivalence is the same as
shallow barbed congruence in the calculus.

Let us first consider how this congruence result differs from the bisimulation
result (Corollary 85), and why it is necessary before we can claim that the
fusion machine is correct. The bisimulation result means that, for any programs
running in isolation, they will have the same behaviour in the machine as they
do in the calculus. But we are really concerned with interactive systems. When
we deploy a program onto a system, the rest of the system—the context—may
be anything, and may interact with our program. We therefore need to prove
that two programs that are barbed bisimilar in all calculus contexts will still be
barbed bisimilar in all machine contexts. This is the soundness property.

For practical purposes, soundness is all that is needed. That said, it is
also easy to prove completeness for the fusion machine. By contrast, for the
Pict machine, only the soundness result is possible [62]. That is because Pict
commits to a single reduction strategy.

CHAPTER 6. FUSION MACHINE THEORY 108

Recall that Em ranges over contexts in the machine (Definition 79, page 105),
and that Eφ ranges over contexts in the explicit fusion calculus (Definition 2,
page 23).

Lemma 86 (Contexts)

1. For all Em there exists an Eφ such that ∀P. calcEm[P] ≡ Eφ[P].

2. For all Eφ there exists an Em such that ∀P. calcEm[P] ≡ Eφ[P].

Proof. For the first part, we extend the translation calc (Definition 81) to trans-
late contexts as well as terms, and we pick Eφ such that Em = calcEφ. The
context translation is

calc(|x̃|)Ec =(x̃) calcEc

calcuv:[Eb] =u v | calcuEb
calcu0:[Eb] = calcuEb
calcM,Ec = calcM | calcEc
calcEc,M = calcEc | calcM

calcu mx̃.Eφ =umx̃.Eφ

calcu !m(x̃).Eφ =!(x̃′)umx̃′.Eφ{x̃
′
/̃x} u 6∈ x̃′, x̃′ distinct, fresh

calcuEφ =Eφ
calcuB|Eb = calcuB | calcuEb
calcuEb|B = calcuEb | calcuB

It is easy to see that this satisfies the lemma.
The second part is trivial: given a context Eφ in the explicit fusion calculus,

construct the machine context c:[Eφ]. 2

Finally we prove the congruence result. Note that we are using shallow
congruence.

Proposition 87 (Congruence) ∀Eφ : Eφ[P] ·∼b Eφ[Q] iff P ∼m Q.

Proof. Follows immediately from Corollary 85 and Lemma 86. 2

6.6 Correctness for the pi calculus

We now address the same results for implementing the pi calculus on the fusion
machine. We will do this via the translation from the pi calculus into the
explicit fusion calculus given in Section 4.5. We proved in that section that the
translation into the explicit fusion calculus is sound. And we have also proved
in the previous section that the explicit fusion is soundly implemented by the
machine. All that remains is a definition of piability for the fusion machine. It is
substantially the same as piability for the explicit fusion calculus (Definition 57,
page 69).

Definition 88 (Piability) A machine M is piable if calcM is piable. A ma-
chine context Em is piable if there exists a context Eπ in the pi calculus such
that for all Qπ, Eπ[Qπ]∗ ≡ calcEm[Q∗

π].

CHAPTER 6. FUSION MACHINE THEORY 109

Piability is preserved by the operations of the machine. This follows imme-
diately from earlier results:

• Piability is preserved by ≡ in the machine, since this corresponds to ≡ in
the explicit fusion calculus (Lemma 82) which itself preserves piability by
definition.

• Piability is preserved by ≡−→ in the machine, for the same reason.

• Piability is preserved by τ−→ in the machine, since it corresponds to −→
in the explicit fusion calculus (Lemma 83), which itself preserves piability
(Lemma 64).

The following lemma states formally the piability properties of the machine.

Lemma 89 Let M and M ′ range over piable machines, and P and P ′ over
terms in the pi calculus.

1. M
µ−→ and calcM = P ∗ implies P

µ−→

2. P
µ−→ implies c:[P ∗] ≡−→

∗ µ−→

3. M τ−→M ′ and calcM = P ∗ implies there exists a P ′ such that P τ−→ P ′

and calcM ′ = P ′∗

4. P τ−→ P ′ implies there exists an M ′ such that c:[P ∗] ≡−→
∗ τ−→ M ′ and

calcM ′ ≡ c:[P ′∗]

Proof. By Lemmas 82 and 63, machine piability is closed under structural con-
gruence and ≡−→ transitions; as explained above, it is also preserved by τ−→
transitions. We can therefore use Lemma 65 to relate all observations and tau
transitions between the explicit fusion calculus to the pi calculus. 2

Corollary 90 (Bisimulation) Let P and Q be any terms in the pi calculus,
and c be any location. Then P

·∼b Q if and only if c:[P ∗] ·∼b c:[Q∗].

We now prove soundness. Recall that Eπ ranges over contexts in the pi
calculus (Definition 53, page 68).

Proposition 91 (Soundness) ∀Eπ : Eπ[Qπ]
·∼b Eπ[Q′

π] implies ∀Empiable :
Em[Q∗

π]
·∼b Em[Q′∗

π]

Proof. We are given that

∀Eπ : Eπ[Qπ]
·∼b Eπ[Q′

π].

By Corollary 66,

∀Eπ : Eπ[Qπ]∗
·∼b Eπ[Q′

π]
∗.

Now by the definition of piability, for all piable Em,

∃Eπ : Eπ[Qπ]∗ ≡ calcEm[Q∗
π] ∧ Eπ[Q′

π]
∗ ≡ calcEm[Q′∗

π].

CHAPTER 6. FUSION MACHINE THEORY 110

Combining this with the previous equation we get

∀Empiable : calcEm[Q∗
π] ≡ Eπ[Qπ]∗

·∼b Eπ[Q′
π]

∗ ≡ calcEm[Q′∗
π].

Finally, by Corollary 85,

∀Empiable : Em[Q∗
π]

·∼b Em[Q′∗
π]. 2

As in Section 4.5, I further conjecture that piable machine contexts are
complete as well as sound.

Conclusion. This concludes our treatment of the correctness of the fusion
machine. We have shown that it is a sound and complete implementation of the
explicit fusion calculus: no matter what other programs are also running on the
machine (i.e. in all contexts), two programs on the machine will have the same
behaviour if and only if they are shallow barbed congruent in the explicit fusion
calculus.

We have also shown that the machine is a sound implementation of the
pi calculus. This result assumes that all the other programs running on the
machine were written in the pi calculus (i.e. they form piable contexts).

The remainder of this chapter addresses the efficiency of the fusion machine.

6.7 The located machine

We now add co-location to the fusion machine formalism, as proposed in the
previous chapter (Section 5.5, page 88). That section has already explained how
co-location works. The goal of the current section is to show how to define it
formally, and to prepare for Section 6.10 where we use it to prove an efficiency
result.

To concentrate on the important features of co-location, we make some sim-
plifying assumptions. First, we remove replication: it is in any case orthogonal
to co-location. Second, for the commands used to create fresh names, we only
use located bound input commands u(x@).P and not located bound output
u(x@).P . This halves our workload.

Note that both free names and bound names may be co-located. However,
the only way for a program to make one name co-located with another is to
create it fresh.

We will annotate the machine transitions to indicate their cost. Let L be
an assumption about co-location, in a sense to be defined. We will write L `
(M −→i M ′) to mean that, given the assumption L, it will take i inter-location
messages for M to evolve into M ′. For instance, using the optimised migration
rule discussed in the previous chapter

u@v ` uv:[in] −→0 uv:[0], v:[in]

where u@v denotes that u and v are co-located.
Locations in the fusion machine never change: if one channel-manager was

initially co-located with another, then it will always be. It is always possible
to pick a fresh name at a fresh location; and it is always possible to pick a
fresh name at an existing location. We represent this by taking L to be an

CHAPTER 6. FUSION MACHINE THEORY 111

equivalence relation on names such that every equivalence class is infinite, and
there are infinitely many different classes. All names within an equivalence class
are physically adjacent. We write u@v when u and v are in the same equivalence
class.

The program (x)P creates a fresh name x′ that is not co-located with any-
thing else. It does this by picking x′ from one of the so-far unused equivalence
classes in L. There are infinitely many equivalence classes, so that arbitrarily
many fresh names can be created. In the same way, the program (x@y)P picks
its fresh name x′ from the same equivalence class as y.

As indicated, we must extend the explicit calculus to include commands
such as (x@y)P for creating fresh names at specified locations. With an abuse
of notation, we still use P to address terms of this extended calculus.

Definition 92 (Located calculus) The set of terms Pπ of terms in the lo-
cated explicit fusion calculus is as in Definition 1, minus replication, and with
two additions:

P ::= (x@y)P
∣∣ u(x̃@).P

∣∣ . . .

The meaning of the new operations is as follows. The locator (x@y)P is a form
of restriction which declares that the bound name x is at the same location as
y. The bound input command u(x̃@).P , when it reacts with uỹ.Q, will create
fresh channels x̃ at the same location as ỹ. In other respects, the commands
behave like normal restriction and bound input.

The terminology and notation for locators is as follows. In the locator (x@y),
y is free. Alpha-renaming the locator (x@y)P changes it to (x′@y)P{x′

/x}
without modifying y. We use the abbreviation (x̃@ỹ) = (x1@y1) . . . (xn@yn).
Let xl range over restrictions and locators; correspondingly, x̃l over lists of
restrictions and locators. Two locators x@y and u@v are distinct if x 6= u,
without regard to y or v. We say that z ∈ x̃@ỹ when z ∈ x̃.

Correspondingly, we also extend bodies of fusion machines with locators
and located inputs. Again, by an abuse of notation, the extended bodies are
addressed by B.

Definition 93 (Located bodies) Located bodies B are as in Definition 69,
without replication, and with one addition:

B ::= in(x̃@).P
∣∣ . . .

The bound input atom in(x̃@).P , when it reacts with out(ỹ).Q, will create fresh
channels x̃ at the same locations as ỹ.

The transition relation is given below. The key features to note are that all
transitions are divided into remote transitions −→1, each of which takes a single
message to accomplish, and local transitions −→0 which take none. The rules
themselves are exactly the same as for the normal fusion machine (Definition 71,
page 101), except they have been classed as either remote or local. We give some
example transitions after the definition.

Definition 94 The costed transition relation L ` M −→i M ′ is the smallest
relation satisfying the rules below, and closed with respect to structural congru-
ence. In the (dep.new) rule we assume that ∀y ∈ fnP : (x@y) 6∈ L.

CHAPTER 6. FUSION MACHINE THEORY 112

Remote transitions: (u@v 6∈ L)

L ` uv:[mx̃.P], v:[] −→1 uv:[], v:[mx̃.P] (migrate)
L ` u:[v y], vp:[] −→1 u:[], vy:[y p], if v < y (dep.fu)

L ` u:[vmx̃.P], v:[] −→1 u:[], v:[mx̃.P] (dep.act)
L ` u:[vm(x̃@).P], v:[] −→1 u:[], v:[m(x̃@).P] (dep.act.bound)

Local transitions: (x′ and ỹ′ are fresh)

L, u@v ` uv:[mx̃.P], v:[] −→0 uv:[], v:[mx̃.P] (migrate.at)
L ` u:[outx̃.P | inỹ.Q] −→0 u:[x̃ ỹ | P | Q] (int)

L, ỹ′@x̃ ` u:[outx̃.P | in(ỹ@).Q] −→0 (|ỹ′|) u:[x̃ ỹ′ | P | Q{ỹ′
/̃y}], ỹ′:[] (int.bound)

L, u@v ` u:[v y], vp:[] −→0 u:[], vy:[y p], if v < y (dep.fu.at)
L, u@v ` u:[vmx̃.P], v:[] −→0 u:[], v:[mx̃.P] (dep.act.at)

L, u@v ` u:[vm(x̃@).P], v:[] −→0 u:[], v:[m(x̃@).P] (dep.actb.at)

L ` u:[(x)P] −→0 (|x′|) up:[P{x
′
/x}], x′:[] (dep.new)

L, x′@y ` u:[(x@y)P] −→0 (|x′|) u:[P{x′
/x}], x′:[] (dep.new.at)

Closure of the above rules under contexts:

L ` C −→i (|x̃|) C ′ chanC2 ∩ chanC ′ = ∅
L ` (|ỹ|) C,C2 −→i (|x̃ỹ|) C ′, C2

Sequencing of the above rules:

L `M −→i M ′ L `M ′ −→j M ′′

L `M −→i+j M ′′

We now explain the transitions. As described in Section 5.5 (page 88), migrate.at
can be accomplished without messages and in constant time by using linked lists
with tail-pointers; and dep.new.at and dep.new can be accomplished without
messages by using lazy channel creation. The transitions dep.fu and dep.act
have optimised local versions dep.fu.at and dep.act.at, for the case where the
terms are being deployed to a co-located machine. And as for the interaction
transitions, they are always performed locally.

We illustrate with the example

(x@y)(ux | uy | x) −→ (x@y)(x y | x) ≡ (x@y)(x y | y).

In the fusion machine calculus, this is

x@y ` u:[outx | iny], x:[out], y:[]
−→0 u:[x y], x:[out], y:[]
−→1 u:[], xy:[out], y:[]
−→0 u:[], xy:[] y:[out]

which amounts to a−→1 transition from the initial machine to the final machine.
This can be deduced from the transition rules as follows.

CHAPTER 6. FUSION MACHINE THEORY 113

from (int) x@y ` u:[outx | iny] −→0 u:[x y] (20)

(20,context) x@y ` u:[outx | iny], x0:[out], y:[] −→0 u:[x y], x0:[out], y:[] (21)

(dep.fu) x@y ` u:[x y], x0:[] −→1 u:[], yy:[] (22)

(22,context) x@y ` u:[x y], x0:[out], y:[] −→1 u:[], xy:[out], y:[] (23)

(migrate.at) x@y ` xy:[out], y:[] −→1 xy:[], y:[out] (24)

(24,context) x@y ` u:[], xy:[out], y:[] −→1 u:[], xy:[], y:[out] (25)

(21,23,sequence) x@y ` u:[outx | iny], x0:[out], y:[] −→1 u:[], xy:[out], y:[] (26)

(26,25,sequence) x@y ` u:[outx | iny], x0:[out], y:[] −→1 u:[], xy:[], y:[out] (27)

The costed transition relation will be used in Section 6.10 to judge efficiency.
In particular, we will show that flattening, introduced in the following section,
is efficient.

6.8 Flattening

In Chapter 1 we introduced the idea of fragmenting a program—dividing it up
into parts, and pre-deploying those parts. This section shows that fragmen-
tation can be encoded purely within the explicit fusion calculus. In fact, the
encoding we introduce is not just a fragmentation but a flattening—that is, a
fragmentation down to the level of individual input and output atoms.

As explained in Section 1.4, the motivation of flattening is to reduce the total
volume of all messages. We will also show 6.10 that it does not unnecessarily
increase the total number of messages.

In writing the encoding, we will use co-location commands. These commands
were introduced in Chapter 5 (page 88) and defined formally in the previous
section (Definition 92, page 111). We use them because the encoding involves
a number of extra local channels: it is only through making these channels
local to the place where they will eventually be used that we can avoid extra
inter-location messages.

Our encoding is a flattening down to the level of individual input and output
commands. That is to say, every command that was syntactically guarded in
the original is semantically guarded in the result. For instance, we will relate
the term u.(v | v) to

(v′@v, v′′@v)(u.(v v′ v′′) | v′ | v′′).

In this example, the commands v′ and v′′ will necessarily remain idle until after
u has reacted: thus, we have succeeded in turning a syntactic guard into a
semantic guard. Moreover, since v′ and v′′ are co-located with v, it will take no
inter-location messages to rename the guarded body.

My flattening ‘flat’ is given below. Laneve and Victor [34] have also given a
different flattening ‘cflat’. This will be analysed in detail in Section 6.10. It was
a key inspiration to my own work. What follows is a list of the key differences.

CHAPTER 6. FUSION MACHINE THEORY 114

1. My encoding preserves strong reduction-closed congruence, so that P ∼b
Q implies flatP ∼b flatQ. But the encoding of Laneve and Victor only
preserves weak congruence, since it involves extra computational steps:
P ≈ Q implies cflatP ≈ cflatQ.

2. My encoding is also itself a congruence: P ∼b flatP . This means that any
sub-program can be replaced by its flattened form, within any larger con-
text. By contrast, the encoding of Laneve and Victor is not a congruence,
and must instead be applied to an entire program.

3. My encoding permits efficient distributed computation. By contrast, a
program cflatP must either be executed locally, or must cost extra inter-
location messages.

4. My encoding uses a prefix operator upon fusions. The encoding of Laneve
and Victor is more elegant, since it dispenses completely with the prefix
operator.

5. My encoding is idempotent: flat flatP ≡ flatP . The encoding of Laneve
and Victor is not.

Technically, we will relate terms P to triples of the form

(x̃l, φ, P ′).

This triple should be understood as the term (x̃l)(φ | P ′), in which P ′ contains
no nested actions and has Eq(P ′) = I, and the alpha-renamable locators x̃l
correspond to the top level actions in P in a sense to be defined (Lemma 96).
We will show that the term (x̃l)(φ | P ′) is bisimilar to P . We now give the
definition of flattening, and follow it with a worked example.

Definition 95 (Flattening) The function [[·]] from terms in the explicit fusion
calculus to triples (x̃l, φ, P ′), and the function flat · from terms in the calculus
to flat terms in the calculus, are as follows. In the parallel rule, suppose by
alpha-renaming that x̃′ does not clash with {ỹ′} ∪ fn(ψ|Q′) and that ỹ′ does not
clash with {x̃′} ∪ fn(φ|P ′). In the prefix rule, let u′ be fresh and suppose that
{x̃} ∩ {z̃} = ∅.

[[0]] = (∅, ∅, 0)
[[x y]] = (∅, x y, 0)

[[(z)P]] = (zx̃l, φ, P ′) where [[P]]=(x̃l, φ, P ′) and z 6∈ x̃l
[[umz̃.P]] =

(
u′@u, u u′, (x̃l)(u′mz̃.φ | P ′)

)
where [[P]]=(x̃l, φ, P ′)

[[P | Q]] = (x̃′lỹ
′
l, φ|ψ, P ′|Q′) where [[P]]=(x̃l, φ, P ′) and [[Q]]=(ỹl, ψ,Q′)

flatP = (x̃l)(φ | P ′) where [[P]]=(x̃l, φ, P ′)

We give a worked example to illustrate the definition. Our example is the

CHAPTER 6. FUSION MACHINE THEORY 115

term u.(v | v):

[[v]] = (v′@v, v v′, v′)
[[v]] = (v′′@v, v v′′, v′′)

[[v|v]] = (v′@v v′′@v, v v′ v′′, v′|v′′)
[[u.(v|v)]] = (u′@u, u u′, (v′@v v′′@v)(u′.(v v′ v′′)|v′|v′′))

flatu.(v|v) = (u′@u)
(
u u′ | (v′@v v′′@v)(u′.(v v′ v′′)|v′|v′′)

)
≡ (v′@v v′′@v)(u.(v v′ v′′) | v′ | v′′)

Observe, incidentally, the translation is idempotent up to structural con-
gruence. Therefore, since it is not the identity, the translation is not injective.
Appealingly, the translation turns out mainly compositional (except for the
prefix operator, obviously):

flat0 = 0

flatx y = x y

flat(x)P = (x) flatP
flatP |Q = flatP | flatQ

There are two invariants for a triple (x̃l, φ, P ′). The first is that all possible
input and output commands in P ′ are over names in x̃l. The second is that
they are all over distinct names.

Lemma 96 Let [[P]] = (x̃l, φ, P ′). Then

1. if P ′ µ−→ then µ ∈ {x̃l};

2. P ′ has no τ−→ transitions.

Proof. Note that Eq(P ′) = I, so any transitions undergone by P ′ have not been
renamed by fusions. The proof follows with a simple induction on the structure
of P . 2

6.9 Correctness of flattening

We now work towards a proof that the flattening is correct: it is a barbed
congruence. Therefore,

P ∼b flatP.

This also implies that it preserves congruence:

P ∼b Q ⇔ flatP ∼b flatQ.

We use the efficient bisimulation technique developed in Section 3.5 (page 38).
The following lemma shows that flattening is well behaved, in the sense

that it preserves structural congruence: P ≡ Q implies flatP ≡ flatQ. Note
that the reverse implication is not true, because the translation is not injective.
For instance, u.(x)P and (x)(u.P) are not structurally congruent, but their
flattenings are.

CHAPTER 6. FUSION MACHINE THEORY 116

Lemma 97 P ≡ Q implies flatP ≡ flatQ.

Proof. This is a straightforward induction over the derivation of P ≡ Q. We
present two interesting cases.

1. The scope law (u)(P | Q) ≡ (u)P | Q if u 6∈ fnQ. Assume that [[P]] =
(x̃l, φ, P ′) and [[Q]] = (ỹl, ψ,Q′). Through alpha renaming, assume x̃l and
ỹl are fresh. Flattening the two sides of the law, we get

flat(u)(P | Q) ≡ (ux̃lỹl)(φ|ψ|P ′|Q′)
flat(u)P | Q ≡ (ux̃l)(φ|P ′) | (ỹl)(ψ|Q′)

But by assumption u 6∈ fnQ we can deduce u 6∈ fn(ỹl)(ψ|Q′); hence the
result.

2. The congruence law P ≡ Q implies P |R ≡ Q|R. Suppose that [[P]] =
(x̃l, φ, P ′), [[Q]] = (ỹl, ψ,Q′) and [[R]] = (z̃l, θ, R′). Flattening the two
sides of the law, we get

flatP |R ≡ (x̃lz̃l)(φ|θ|P ′|R′)
flatQ|R ≡ (ỹlz̃l)(ψ|θ|Q′|R′)

We can alpha-rename so that x̃l, ỹl and z̃l are fresh. Therefore the two
equivalences can be rewritten as

flatP |R ≡ (x̃l)(φ|P ′) | (z̃l)(θ|R′)
flatQ|R ≡ (ỹl)(ψ|Q′) | (z̃l)(θ|R′)

The induction hypothesis is that flatP ≡ flatQ; hence the result. 2

Lemma 98 Eq(P) = Eq(flatP).

Lemma 99

1. P
µ−→ I : P ′ implies flatP

µ−→ I : flatP ′.

2. flatP
µ−→ I : Q′ implies ∃P ′ : P

µ−→ I : P ′, Q′ ≡ flatP ′.

Proof. Recall that µ ranges over N ∪N . For the first part, we do an induction
over the derivation of P

µ−→ I : P ′. From Definition 19 (page 38) there are
three cases:

1. µz̃.P
µ−→ z̃ : P . Let (x̃l, φ, P ′) = [[P]]. Flattening both sides we get

(x̃l)(µz̃.φ | P ′)
µ−→ z̃ : (x̃l)(φ | P ′). And since x̃l was chosen fresh, it does

not bind z̃, and the transition is valid.

2. For closure under structural congruence use Lemma 97.

3. For closure under restriction and parallel composition, use the fact that
flat is compositional with respect to restriction and parallel composition.

For the second part, we do an induction over the derivation of flatP
µ−→.

By Proposition 25, this amounts to an induction over the structure of flatP .
And this amounts to an induction over the structure of P . The terms flat0 and
flatx y have no labelled transitions. This leaves three cases.

CHAPTER 6. FUSION MACHINE THEORY 117

1. Given a transition
µ−→ undergone by flatµz̃.P , we must show that µz̃.P

undergoes the same transition. Let (x̃l, φ, P ′) = [[P]]. Then flatµz̃.P ≡
(x̃l)(µz̃.φ | P ′). By Proposition 25, any transition must come from µz̃.φ
or P ′. But by Lemma 96, the transitions in P ′ are only on names in x̃.
Therefore, the term can only make a

µ−→ transition to z̃ : (x̃l)(φ | P ′).
This is just the flattened form of µz̃.P

µ−→ z̃ : P .

2. Given a transition
µ−→ undergone by flat(z)P . This must come from flatP

undergoing the same transition with z 6∈ µ. By the induction hypothesis,
so does P ; therefore, so does (z)P .

3. Given a transition
µ−→ undergone by flatP |Q. Therefore, it is also un-

dergone by flatP | flatQ. By Proposition 25, this comes either from

flatP
µ′

−→ or flatQ
µ′

−→, with (flatP |flatQ) ` µ′ = µ. By the induction

hypothesis, either P
µ′

−→ or Q
µ′

−→. By Lemma 98, P |Q ` µ = µ′. There-
fore P | Q undergoes the same transition. 2

Lemma 100

1. P ?u v−→ P ′ implies u v|flatP τ−→ u v|flatP ′

2. flatP ?u v−→ Q′ implies ∃P ′ : u v|P τ−→ u v|P ′, Q′ ≡ flatP ′

Proof. For the first part, the proof is by induction on the derivation of P ?u v−→ P ′.
From Definition 19 (page 38) there are four cases.

1. uz̃.P | vw̃.Q ?u v−→ z̃ w̃ | P | Q. Let (x̃l, φ, P ′) = [[P]] and (ỹl, ψ,Q′) = [[Q]].
Flattening both sides we get (x̃lỹl)(uz̃.φ | P ′ | vw̃.ψ | Q′) ?u v−→ (x̃lỹl)(z̃ w̃ |
φ | ψ | P ′ | Q′). Since x̃l and ỹl were chosen fresh, they do not bind u or
v, and the transition is valid.

2. For the other closure properties, the proof is the same as in the previous
lemma.

For the second part, we do an induction on the structure of P . The cases
0, x y and µz̃.P undergo no ?u v−→ transitions. Therefore we need only consider
restriction and parallel composition.

1. Suppose flat(z)P undergoes a ?u v−→ transition. By Proposition 25 and the
compositionality of the flattening operator, the transition is (z) flatP ?u v−→
(z)Q′, with z 6∈ {u, v} and flatP ?u v−→ Q′. By the induction hypothe-
sis there is a P ′ such that Q′ ≡ flatP ′ and u v|P τ−→ u v|P ′. Hence
u v|(z)P τ−→ u v|(z)P ′ with (z)Q′ ≡ flat(z)P ′ as required.

2. Suppose flatP |Q undergoes a ?u v−→ transition coming from P alone. (The
case for Q alone is similar). Then flatP | flatQ undergoes the same
transition: namely, flatP | flatQ ?u v−→ flatP ′ | flatQ. (We used the in-
duction hypothesis to tell that the reaction of flatP alone led to some-
thing in the image of flat.) By Proposition 25, this must come from

CHAPTER 6. FUSION MACHINE THEORY 118

flatP
?x y−→ flatP ′, with flatP | flatQ `?x y =?u v. By the induction hy-

pothesis, x y|P τ−→ x y|P ′. Hence x y|P |Q τ−→ x y|P ′|Q. By Lemmas 98
and 28, u v|P |Q τ−→ u v|P ′|Q as desired.

3. Suppose flatP |Q undergoes a ?u v−→ transition involving P and Q together.
This is largely the same as the previous case. 2

Proposition 101 P ∼g flatP

Proof. From the previous lemmas, the relation S= {(P,Q) : Q ≡ flatP} is
an efficient bisimulation—in other words, flat itself is an efficient bisimulation.
Hence, from Proposition 32, it is a ground bisimulation. 2

We only defined flattening on terms without replication. Indeed, there seems
little point in defining it on terms with replication: the aim of guarded replica-
tion !ux.P is to prevent P from being deployed until it is needed, while the aim
of flattening flatP is to allow P to be deployed before it is needed.

Even so, because of the congruence result, any P and flatP remain congruent
even in contexts which include replication. For instance, given a program !µ.P ,
we can flatten just the inside to !µ.(flatP).

Thus, because our flattening is a congruence, there is neither any need nor
purpose in flattening replication. In contrast, a different form of flattening by
Laneve, Parrow and Victor is not a congruence. Therefore, when they show
how to flatten replication [33], it is for them a basic necessity.

6.10 Efficiency of flattening

This section is concerned with the efficiency of flattening. In particular, we
show that the flattening from the previous section is efficient. This draws on all
the preceding results from this chapter: it uses the fusion machine as a model
for where the costs are; it uses the costed transition relation to count these
costs; and it uses the flattening and its proof of correctness. We also discuss the
efficiency of a catalyst flattening presented by Laneve and Victor [34].

There are two ways to judge efficiency: by the total number of messages
it takes to reach a given state, or by the total volume of traffic. Consider a
program of size n. In the introduction (Section 1.4, page 12) we suggested
why a program would normally takes n messages, with total size 1

2n
2. We also

suggested that flattening could achieve 2n messages with total size 2n.
I do not yet know how best to measure either the size of a program or the

size of a message. Therefore the scope of this section is a little smaller: we will
count the number of messages, but not their size. In particular, we show that
if a program takes n messages, then its flattening need take no more than 2n.
Although we do not quantify their size, it will be clear that each of these 2n
messages are small.

We will start with an example. Consider the program

P = u.(v | v) | u.

CHAPTER 6. FUSION MACHINE THEORY 119

Running on a fusion machine, c:[P] might execute as follows. We have omitted
all empty channel-managers for clarity.

c:[u.(v | v) | u] (28)
Deploy u: −→1 c:[u], u:[out.(v | v)] (29)
Deploy u: −→1 u:[in | out.(v | v)] (30)
React at u: −→0 u:[v | v] (31)
Deploy v: −→1 u:[v], v:[out] (32)
Deploy v: −→1 v:[in | out] (33)
React at v: −→0 0 (34)

Flattening the program yields the following:

flatP = (u′@u, u′′@u)
(
u u′ u′′ | (v′@v, v′′@v)

(
u′.(v v′ v′′) | v′ | v′′

)
| u′′

)
We will show a possible execution of this flattened program, which takes twice
as many messages as the original. Our first step is to deploy all the restrictions
using the (dep.new.at) rule

L, x′@y ` u:[(x@y)P] −→0 (|x′|) u:[P{x′
/x}], x′:[] x′ fresh. (dep.new.at)

Writing the entire execution out in full would be confusing. Instead, we focus
on the essential parts. In particular, by an abuse of notation, we assume that
all restricted names are already unique so that no renaming is needed. We
also assume an L which satisfies all the locating restrictions (u′@u) . . . in the
flattened term, and we omit the resulting restrictions (|x′|) in the machine. The
result of deploying all restrictions is as follows:

c:[flatP] −→0 c:[u u′ u′′ | u′.(v v′ v′′) | v′ | v′′ | u].

Execution now continues as shown below. The numbering to the side indicates
which states in this flattened execution trace, correspond to which states in the
original execution trace.

c:[u u′ u′′ | u′.(v v′ v′′) | v′ | v′′ | u] (28’)
Deploy u: −→1 c:[u u′′ | u′.(v v′ v′′) | v′ | v′′ | u], u′u:[]

−→1 c:[u u′′ | v′ | v′′ | u], u′u:[out.(v v′ v′′)]
−→0 c:[u u′′ | v′ | v′′ | u], u:[out.(v v′ v′′)] (29’)

Deploy u: −→1 c:[v′ | v′′ | u], u′′u:[], u:[out.(v v′ v′′)]
−→1 c:[v′ | v′′], u′′u:[in], u:[out.(v v′ v′′)]
−→0 c:[v′ | v′′], u:[in | out.(v v′ v′′)] (30’)

React at u: −→0 c:[v′ | v′′], u:[v v′ v′′] (31’)
Deploy v: −→1 c:[v′ | v′′], u:[v v′′], v′v:[]

−→1 c:[v′′], u:[v v′′], v′v:[out]
−→0 c:[v′′], u:[v v′′], v:[out] (32’)

Deploy v: −→1 c:[v′′], v′′v :[], v:[out]
−→1 v′′v :[in], v:[out]
−→0 v:[in | out] (33’)

CHAPTER 6. FUSION MACHINE THEORY 120

React at v: −→0 0 (34’)

The essential difference between the original and this flattened version is in the
deployment of actions. In the original, it took just one transition, costing one
potentially large message. In this flattened version it takes three transitions:

1. Deploy a fusion u = u′. This costs one small (fixed-size) message.

2. Deploy an action u′.φ. This costs one message whose size is only the size
of the fusion φ: i.e. the number of parallel actions prefixed by u.

3. Migrate the action from u′ to u. This costs nothing, since u′ is co-located
with u.

We have shown only one possible execution trace, in which the actions v′ |
v′′ are deployed after the fusions v v′ v′′. Another possible trace would have
these actions pre-deployed in advance. Now consider a different program in
which the actions are pre-deployed but then u:[out.(v | v)] never reacts for
some reason: in this case, the pre-deployment would have been in vain, costing
needless messages. On the other hand, since the messages are asynchronous,
they would not be a bottleneck for any other part of the computation. Costing
these issues is subtle. We will sidestep the issues by proving only an efficiency
simulation, in which the flattened program is able to match the costs of the
original: not an efficiency bisimulation, where it is required to match.

Note the possibility where u and v are co-located. In this case, it would cost
no messages to deploy the actions v | v in the original:

u:[v | v] −→0 u:[v], v:[out] −→0 v:[in | out]

By contrast, the flattened version would still cost messages to deploy the actions:

c:[v′ | v′′], u:[v v′ v′′] −→0 c:[v′ | v′′], u:[v v′′], v′v:[]
−→1 c:[v′′], u:[v v′′], v′v:[out]
−→0 c:[v′′], u:[v v′′], v:[out]
−→0 c:[v′′], v′′v :[], v:[out]
−→1 v′′v :[in], v:[out]
−→0 v:[in | out]

This raises an apparent discrepancy, of the flattened version costing more than
twice the original. It is only an apparent discrepancy, however, which arises
from our simplification of counting number of messages rather than size. If we
had counted size as well, we would have included the original’s initial cost to
transport v′ | v′′ from c to u. To count size as well is beyond the scope of this
chapter. Instead, to avoid the discrepancy, we will assume that no names in the
original program P are co-located.

Proposition 102 (Efficiency) If L ` c:[P] −→i M ′ where no names in P are
co-located, then there exists a machine N ′ such that L ` c:[flatP] −→j N ′ such
that j ≤ 2i and M ′ ·∼b N ′.

Proof. We will define a relation S on machines such that c:[P] S c:[flatP]. We
will establish that S is closed with respect to costed transitions in M , and

CHAPTER 6. FUSION MACHINE THEORY 121

satisfies M ·∼b N . This constitutes a proof of the proposition. We might call S
an efficiency simulation.

As in the example given above, c:[flatP] will leave in c all actions, right until
they are about to be used. By contrast, c:[P] moves actions about according
to the name that guards them. We will quotient this difference out, as follows.
Define ≡ni to be the smallest congruence containing ≡ such that

x:[P | B1], y:[B2] ≡ni x:[B1], y:[P | B2].

The subscript ni stands for the fact that it is not important where in the machine
a body P should be. We adopt a notation which subsumes this quotient: write
all terms P in parallel with channel-managers, rather than inside them. For
instance, both sides of the above equation are represented by x:[B1], P, y:[B2].
We will also assume but not write down the empty channel-managers.

This quotient is reminiscent of the uniprocessor machine of Pierce and Turner
(described in Section 1.3 page 10), in which all bodies P are placed in a central
location. However, we are using the quotient merely as a proof technique; the
uniprocessor machine uses it as an implementation technique.

We define flattening on machines. The function flatM is obtained by piece-
wise application of flat to the body of each channel-manager in M as follows:

flatB1|B2 = flatB1 | flatB2

flatP = (x̃l)(φ | P ′) where [[P]]=(x̃l, φ, P ′)
flatmz̃.P = (x̃l)(mz̃.φ | P ′) where [[P]]=(x̃l, φ, P ′)

Define the relation S such that M S N if and only if N ≡ni flatM . One issue
is that the translation cflatP will introduce many local names. Because we have
not defined garbage collection on the machine, there will be many local names
left behind after the execution of c:[flatP], which are not produced by c:[P].
Strictly speaking, the relation S should retain all these names. But because this
introduces a lot of book-keeping, we will instead just assume garbage collection
in the machine.

Clearly, c:[P] S c:[flatP].
We now prove that S is closed under transitions. In particular, if M S N

and M −→i M ′, then there exists an N ′ such that N −→j N ′ with j ≤ 2i,
and M ′ S N ′. We do this by induction on the derivation of M −→i M ′

(Definition 94, page 111).

1. (migrate) Suppose

L ` uv:[mz̃.P], v:[] −→1 uv:[], v:[mz̃.P].

Let (x̃l, φ, P ′) = [[P]]. Then, flattening the left hand side and quotienting
by ≡ni we get uv:[mz̃.φ], v:[], P ′. This can undergo a −→1 transition to
uv:[], v:[mz̃.φ], P ′. The result of this transition is just the same as the
flattening and quotienting of the right hand side in the original, as desired.

2. (dep.fu) Suppose

u:[v y], vp:[] −→1 u:[], vy:[y p], if v¡y

Again, flattening and quotienting the left hand side allows for a matching
(dep.fu) transition.

CHAPTER 6. FUSION MACHINE THEORY 122

3. (dep.act) Suppose

u:[vmz̃.P], v:[] −→1 u:[], v:[mz̃.P].

Flattening and quotienting the left hand side we get (v′@v)(v′ v | v′mz̃.φ |
P ′). This reacts as follows:

(v′@v)(v′ v | v′mz̃.φ | P ′) −→0 (|v′|) v′ v | v′mz̃.φ | P ′

−→1 (|v′|) v′v:[], v
′mz̃.φ, P ′

−→1 (|v′|) v′v:[mz̃.φ], P ′

−→0 (|v′|) v′v:[], v:[mz̃.φ], P ′

Since we have assumed garbage collection, and since the name v′ does not
appear in the rest of the term, this is just the same as v:[mz̃.φ], P ′. And
this is just the flattening and quotienting of the original right hand side.
Deploying a bound action is similar.

4. (int) Suppose

u:[outz̃1.P | inz̃2.Q] −→0 u:[z̃1 z̃2 | P | Q].

Let [[P]] = (x̃l, φ, P ′) as before, and also [[Q]] = (ỹl, ψ,Q′). Flattening and
quotienting the left hand side, we get

P ′, Q′, u:[outz̃1.φ | inz̃2.ψ] −→0 P ′, Q′, z̃1 z̃2, φ, ψ.

But this is just the same as the flattening and quotienting of the right
hand side.

5. The co-location transitions in M are not possible, since we assumed no
names in P to be co-located. 2

This concludes the induction. Finally, observe that calc flatM ≡ flat calcM .
Therefore (Proposition 101) for any M S N , calcN ·∼b calcM . Therefore
(Corollary 85) M ·∼b N as desired.

We now consider the efficiency of another flattening given by Laneve and Victor.
Their flattening was a key influence on mine. In fact, they were motivated not
by practical concerns of efficiency, but by theoretical concerns of elegance. Its
elegance lies in the fact that it manages to avoid all use of the prefix operator; by
contrast, my flattening uses a prefix operator on fusions. However, the elegance
comes at the cost of preventing pre-deployment.

Their flattening, cflat, uses catalyst agents Uy = (z)y zzy which have the
effect of fusing two names that they receive. For instance, the following example
uses the catalyst Uy to fuse u v.

Uy | (w)(y uvw | Uw) ≡ (z)y zzy | (w)(y uvw | Uw)
−→ u v | Uy.

There is also a subsidiary flattening cflaty, which yields a term that is currently
blocked but which can be unblocked by a catalyst at y. We now define both cflat
and cflaty. The definition is a little hard to read, so we follow it immediately
with a worked example.

CHAPTER 6. FUSION MACHINE THEORY 123

Definition 103 (Catalyst flattening) Assume w, y, y′, y′′ not free in P . Let
Uy = (z)y zzy. Then

cflatP = (y)(cflaty P | Uy)

where the subsidiary translation cflaty, parameterised by y, is as follows:

cflaty ux̃.P = (wy′y′′)
(
wx̃yy′′ | yuwy′ | Uy′ | cflaty′′ P

)
cflaty ux̃.P = (wy′y′′)

(
wx̃y′′y | yuwy′ | Uy′ | cflaty′′ P

)
cflaty (x)P = (x)(cflaty P)

cflaty P | Q = cflaty P | cflaty Q

As an example, we flatten the term u.(vx). This involves many local names. In
general, for cflaty µ.P we use three local names: w which will become fused to µ
when the action has been unlocked; y′ which will become fused to the catalyst
y when the action has been unlocked, so as to unlock other parallel actions; and
y′′ which will become fused to the catalyst y which this action µ is consumed
in reaction. We use the subscript 0 for the three names when they are used in
cflaty u, and 1 for the three names when they are used in cflaty′′

0
vx. In fact,

the same name is then addressed by both y′′0 (to lock the term guarded by u),
and y1 (for the name under which vx is locked). Writing y1 for this name, the
translation cflatu.(vx) is

(y w0 y
′
0 y1 w1 y

′
1 y

′′
1)

(
Uy | Uy′

0
| Uy′

1
| yuw0y

′
0 | w0yy1 | y0vw1y

′
1 | w1xy1y

′′
1

)
.

Immediately, without any conditions, the top-level actions can be unlocked.
This happens by reaction yuw0y

′
0 with the catalyst Uy. This fuses u w0 and

y′0 y, giving

(y y1 w1 y
′
1 y

′′
1)

(
Uy | Uy′

1
| uyy1 | y0vw1y

′
1 | w1xy1y

′′
1

)
.

Before anything further can happen, the u must react with the environment.
Once this happens, it will fuse y to y1, giving

(y w1 y
′
1 y

′′
1)

(
Uy | Uy′

1
| yvw1y

′
1 | w1xyy

′′
1

)
.

The action vx is now at top level and can now be unlocked by reaction with the
catalyst, just as in the first step. This will fuse v w1 and y′1 y, giving

(y y′′1)
(
Uy | vxyy′′1

)
.

Laneve and Victor have shown that ‘cflat’ preserves congruence: if P ≈b Q
then cflatP ≈b cflatQ. However, it is not itself a congruence. Contrast this to
‘flat’, which is a congruence: that is to say, any sub-program P can be replaced
by flatP within any larger context, but cannot be replaced by cflatP . This
is because cflatP requires extra names to be transmitted in every input and
output action. Note too that cflat only works up to weak bisimulation, while
flat also works up to strong bisimulation. This is because cflat uses extra internal
reaction steps.

However, in this section we shall investigate not the bisimulation of cflat but
its efficiency. To do this we will use a simpler example program P = u | u. We

CHAPTER 6. FUSION MACHINE THEORY 124

will first show the execution trace of this program, assuming no co-location. By
drawing a graph of all the messages involved, we will be able to tell how cflat
must use co-location to make it more efficient.

When run directly on the machine, the program P executes as follows:

c:[u|u] −→1 c:[u], u:[out] −→1 u:[out | in] −→0 0

This original takes two messages. Therefore, we expect that the flattened form
should take no more than four messages. The flattened form cflatu | u is

(yz0 w1y
′
1y

′′
1 z1 w2y

′
2y

′′
2 z2)

(y z0z9y | y uw1y
′
1 | y′1 z1z1y′1 | y uw2y

′
2 | w1 yy

′′
1 | w2 y

′′
2 y | y′2 z2z2y′2)

We will trace through the execution of c:[cflatu|u] on the fusion machine. There
are lots of terms, so we introduce some abbreviations. As before we omit empty
channel-managers. We write u ; v to indicate that the channel-manager u has
a fusion-pointer to v, and also that u < v in the total order on names.

A = y z0z0y | y uw1y
′
1

B = y′1 z1z1y
′
1 | y uw2y

′
2

C = w1 yy
′′
1 | w2 y

′′
2 y

D = y′2 z2z2y
′
2

E = y′1;y | z0;w1;u

F = y′2;y′1;y | z0;w1;u | z1;w2;u

The total order on names indicated in F above is just one possible order, but
the other possible orders make only minor differences to the execution trace.

The first step of executing c:[cflatu|u] is to deploy all the restrictions, just
as before. Execution then continues as follows.

c:[ABCD]
Deploy actions A from c: −→2 c:[BCD], y:[in z0z0y | outuw1y

′
1]

Interact at y: −→0 c:[BCD], y:[z0 u | z0 w1 | y′1 y]
Deploy fusions from y: −→4 c:[BCD], E
Deploy actions B from c: −→2 c:[CD], y:[outuw2y

′
2], y

′
1:[in z1z1y

′
1], E

Migrate from y′1 to y: −→1 c:[CD], y:[outuw2y
′
2 | in z1z1y′1], E

Interact at y: −→0 c:[CD], y:[z1 u | z1 w2 | y′2 y′1], E
Deploy fusions from y: −→4 c:[CD], F
Deploy actions C from c: −→2 c:[D], w1:[out yy′′1], w2:[in yy′′2], F
Migrate w1;u, w2;u: −→2 c:[D], u:[out yy′′1 | in yy′′2], F
Interact at u: −→0 c:[D], u:[y′′1 y | y′′2 y], F
Deploy fusions from u: −→2 c:[D], y′′1;y, y′′2;y, F

The following graph shows all messages involved in the execution. Each directed
edge corresponds to one message.

CHAPTER 6. FUSION MACHINE THEORY 125

c uy

y '1

y ''1

y ''2

z0

z1

w1

w2

y '2

Our task is to figure which names should be co-located by the translation
cflat, to have as few inter-location messages as possible. In effect, we must
partition the graph so that few edges cross between partitions. But there are two
constraints. First, the translation cflat is not at liberty to choose locations for u
and c, so we must assume them to be in different partitions. Second, although
it is not apparent in the short example program u|u, in a larger program there
will be several subsequent messages between {y′′1 , y′′2} and y. Therefore, y′′1 and
y′′2 should be co-located with y.

There is only one partition which uses no more than four inter-location
messages: all names are co-located with c, apart from u. Using this partition,
we now present an efficient form of cflat. It is predicated upon the channel c
from which the flattened program will be deployed.

cflatc P = (y@c)(cflatc,y P | Uy)

cflatc,y ux̃.P = (w@c, y′@c, y′′@c)
(
wx̃yy′′ | yuwy′ | Uy′ | cflatc,y′′ P

)
cflatc,y ux̃.P = (w@c, y′@c, y′′@c)

(
wx̃y′′y | yuwy′ | Uy′ | cflatc,y′′ P

)
cflatc,y (x)P = (x)(cflatc,y P)

cflatc,y P | Q = cflatc,y P | cflatc,y Q

This located catalyst flattening cflat uses a total of 2n messages, just like our
earlier flattening. However, cflat has a striking property which we illustrate in
the following interaction diagram. The diagram shows all the inter-location
messages sent during the execution of c:[cflatu|u]. We have drawn all the
channel-managers cyy′1y

′′
2w1w2z0z1 in the same vertical column, since they are

co-located.
cyy 'y '

w w z z
1 2

1 2 0 1

uyy ''1

uyy ''2

y ''=y
1

y ''=y
2

u

Observe how, through our pursuit of a small message count, we have ended up
with a flattening which is not usefully distributed, and which uses handshaking.
It is basically the same as the Facile machine (Figures 1 and 2 on page 13).
In effect, cflat can either be distributed (by placing the catalysts at different
locations), or it can use a small number of messages, but it cannot have both.

CHAPTER 6. FUSION MACHINE THEORY 126

By contrast, my translation ‘flat’ is distributed, uses a small number of
messages, and avoids handshaking. It correctly implements the deployment
machine (Figure 6 on page 16).

Conclusions. This chapter has developed techniques to reason about dis-
tributed efficiency in the pi calculus, and applied them. As far as I know, this
has not been done before.

Efficiency can only be judged with respect to some model of execution. We
have provided this here by the fusion machine and the co-location assumption
L. We then introduced the costed transition relation, counting the number of
inter-location messages. We demonstrated how these costed messages could be
used: first in an efficiency simulation to prove that one flattening is efficient,
and second in a message graph to deduce which names should be co-located in
another flattening.

What becomes apparent, however, is that message-counting gives only a
partial model of efficiency. We have observed its limitations in two ways. First,
since we failed to count message size, we were able to judge flattening’s efficiency
only in a program that does not already use co-location (Proposition 102).
Second, although the catalyst flattening is inefficient through being centralised
and serialised, this inefficiency is not reflected in its message count.

Nevertheless, our new techniques of co-location and costed transitions were
enough to provide some important results. We showed that there are problems
with the catalyst encoding ‘cflat’. And we showed that, with our encoding ‘flat’,
the fusion machine really does implement the deployment machine that we had
proposed in Chapter 1.

Chapter 7

Conclusions

The word ‘fusion’ comes from the Latin fundare, to pour. Figuratively it de-
scribes two metals that have melted and mixed to become one. This is why we
call things fused that are identical, indistinguishable, interchangeable.

We have seen several different classes of entities that allow a context to
use names interchangeably. In the fusion machine, and through its transitions,
fusion-pointers allow names to be used interchangeably. In the calculus, and
through structural congruence, the term x y allows names to be used inter-
changeably. Also in the calculus, and through internal reaction, equators allow
names to be used interchangeably. It seems appropriate to define explicit fu-
sions generally: an explicit fusion is anything which has prolonged existence and
which, through some mechanism, allows two names to be used interchangeably.

A widely studied explicit fusion is Frege’s statement over a hundred years ago
that the Morning Star is the Evening Star [20]. By this he means that the two
names refer to the same object (Venus) even though they imply different modes
of presentation (one in the morning, the other in the evening). Much philosoph-
ical effort has gone into the observation that the names are interchangeable only
in contexts about their objects (‘The Morning Star is the second planet from
the sun’) rather than their mode of presentation (‘The Morning Star is visible
in the evening’).

By contrast, we started from the assumption that explicit fusions allow
names to be interchanged in all contexts. One possible mechanism for this
interchange is that the names refer to the same object, as for Frege; but it is not
the only possibility. Other mechanisms include fusion-pointers, explicit fusion
terms x y, and equators.

There are three sections in this final chapter. The first section reviews the
results of the dissertation. The second section speculates on a wider theory of
explicit fusions. And the third section speculates on how the fusion machine
might be adopted by working programmers.

7.1 Review

We have introduced the explicit fusion calculus. It provides a new model for
synchronous rendezvous: the rendezvous gives rise to an explicit fusion, which
then has subsequent substitutive effect. Through this model we are able to

127

CHAPTER 7. CONCLUSION 128

implement distributed synchronous rendezvous without handshaking.
We have developed the bisimulation theory for the explicit fusion calculus.

Bisimulation in the explicit fusion calculus turns out to have a number of ap-
pealing properties: barbed congruence coincides with ground congruence, which
moreover coincides with hyper-equivalence in the fusion calculus. Additionally,
for a bisimulation to be a congruence, it turns out to be necessary and sufficient
for it to have the same explicit fusions on the inside, and behave the same with
any explicit fusions outside. Based on these conditions, we found an efficient
characterisation for barbed and ground congruence. As a technical aid in the
efficient bisimulation, we introduced the ‘ask’ fusion labelled transition. A simi-
lar transition is also being used in current work by Milner [46] to systematically
generate bisimulation congruences for a variety of calculi. If it can be shown
that he is using the label in the same way as us, then our results will mean that
he is in fact generating the familiar ground congruence.

In addition to these theoretical results, it turns out that the explicit fusion
calculus is also practically useful in implementing the pi calculus.

We have introduced the fusion machine. It is a distributed abstract machine
for both the pi calculus and the explicit fusion calculus. That is to say: when
it is given a term in the explicit fusion calculus, our machine implements it
directly. And when given a term in the pi calculus, our machine also implements
it directly, without the need first to translate the term into the explicit fusion
calculus.

However, there is a compelling reason to translate terms into the explicit
fusion calculus before executing them: this allows them to be fragmented. Frag-
mentation is when we split up a term and pre-deploy the fragments. This in
turn allows for a more efficient implementation. (We elaborate on this point
below.)

We have shown a way to encode fragmentation purely within the explicit
fusion calculus. We have proved that our encoding has a number of appealing
properties. Most importantly, it is a congruence. This means that any program
in the explicit fusion calculus can be replaced by its flattened form, in any
context. It also works up to strong bisimulation: the encoded program takes
exactly the same number of reaction steps as the original. It is idempotent.
And it does not cost extra messages when implemented in the fusion machine.
By contrast, the catalyst encoding of Laneve and Victor [34] only works up to
weak bisimulation, is not a congruence, and is not idempotent. As for efficiency,
it must either cost extra messages, or not be distributed.

As mentioned, the fusion machine implements distributed synchronous ren-
dezvous without handshaking. This is useful, and has not been managed by any
previous distributed abstract machines for concurrent calculi. I now consider
whether the fusion machine is the natural and inevitable distributed implemen-
tation of the pi calculus. There are two key questions: whether fragmentation
should indeed be used, and whether explicit fusions are the best way to imple-
ment this fragmentation.

Fragmentation. We built the fusion machine so that in each deployment
message it transports an entire continuation to a channel-manager (through
the (dep.act) transition given in Section 5.1, and as illustrated in Figure 4 on
page 14). We have also demonstrated a way to fragment programs so as to

CHAPTER 7. CONCLUSION 129

reduce message volume (through the flattening translation given in Section 6.8,
and as illustrated in Figure 6 on page 16). The task now is to evaluate whether
these techniques are necessary to achieve full efficiency.

To measure efficiency, in terms of counting the number of inter-location
messages, we developed the costed transition relation (Section 6.7). We also in-
troduced the costed simulation technique to compare the cost of two programs.
The results of using these techniques are discussed below. As far as I know,
such efficiency techniques have not previously been developed for the pi calcu-
lus. However, we discovered (Section 6.10) that merely counting the number of
messages does not give a complete measure of efficiency: we also need to count
the total volume of traffic, and to measure the latency of a program—that is,
the time between the program receiving some input and replying with the rele-
vant output. Note that, although it is meaningless to count the total cost of an
indefinite execution, our approach of counting costs up to some finite stage of
execution is valid.

Now if two program fragments wish to rendezvous at a channel, the fusion
machine transports them in their entirety to the channel. This takes two mes-
sages, one for each. Then rendezvous occurs, and the two program fragments
can continue immediately. With this design, the fusion machine requires only
two messages per rendezvous. It seems that this design is the only way to
achieve such a low message count. For the only alternative would be to leave
the continuation behind, as in Facile (Figure 1, page 13); but then it would cost
extra messages to tell the continuation to continue.

Section 1.4 conjectured that a program of size n would take n messages
to execute, using the design above, with total message volume 1

2n
2. That is

because, in the worst case, the entire program would be transported at every
step of its execution. We also conjectured that the same program when flattened
would take 2n messages with total size 2n. The first n messages would deploy
the (constant-sized) fragments onto the machine, and the second n messages
would execute the machine, as above. We proved part of this conjecture using
the costed simulation technique: a flattened program does indeed take twice
as many messages as the un-flattened version (Section 6.10), and each of these
messages is small.

Fusions and forwarders. Section 1.6 proposed two possibilities: we could
either implement only those fusions that arise when executing programs in the
pi calculus, or we could implement fusions that arise more generally from the
explicit fusion calculus.

The discussion in that section revolved around the need for ‘conflict reso-
lution’ of forwarders. If there exist two forwarders x ; y | x ; z, then two
messages sent to x might fail to meet. Hence, the fusion machine resolves the
conflict into x; y | y ; z. This is done with the (dep.fu) rule in the fusion
machine (Section 5.1).

Now if the machine is limited to only ever running programs in the pi cal-
culus, then this conflict-resolution is never needed. For any reaction ux.P |
u(y).Q −→ P | Q{x/y} we can create a forwarder y ; x; the fact that y is
bound means that never be any other forwarder y ; z. This argument was
made formal in Section 4.5. It introduced piability—a structural characterisa-
tion for whether a given term in the explicit fusion calculus, is the image under

CHAPTER 7. CONCLUSION 130

translation of some term in the pi calculus.
Section 1.6 suggested that there would be no benefit in limiting the fusion

machine to purely piable terms. We can now say this more precisely. The
general (dep.fu) transition is

u:[x y], xq:[] −→ u:[], xy:[y q] if x < y.

If a term is piable, then q will always be zero, and so the fusion y q in the
result will always be dismissed. Therefore, a piable-only fusion machine would
still require a (dep.fu) transition (albeit a less general one), and it would still
execute in exactly the same way as the general rule. I conclude that there is no
benefit in limiting the machine to the pi calculus.

Fusions also allow for an appealing programming idiom. Suppose there is a
subprogram u which increments a number, and that we wish to increment the
number 3. In C++ this would be written

int u(int i) {return i+ 1;}
. . .
int y = u(3); P;

We now consider how to implement the program in the pi calculus and the
explicit fusion calculus. Integers have not so far been considered in the explicit
fusion calculus. I therefore invent the notation 〈i+1〉 just for this discussion,
and allow integers as well as names to be transmitted. (Some ramifications are
considered in the following section). Now for the pi calculus, and since it lacks
fusions, we are forced to invent a return channel r along which the answer can
be returned:

(r)u3r.r(y).P | !u(ir).r〈i+1〉
Rendezvous on u: −→ (r)(r(y).P | r4) . . .
Rendezvous on r: −→ P{4/y} . . .

This requires two instances of rendezvous, and it blocks the continuation P from
executing until the answer has been calculated. But with fusions we can avoid
the second rendezvous and the block:

(y)u3y.P | !u(io).(o 〈i+1〉)
Rendezvous on u: −→ (y)(P | y 4) . . .

≡ P{4/y} . . .

We see that explicit fusions bring benefits with no disadvantages. It makes sense
to implement the explicit fusion calculus.

Tree of forwarders. We established (Lemma 73) an invariant about the for-
warders in the fusion machine: the forwarders generate a tree, with each edge
directed to the root. We also showed that reaction causes two trees to merge, and
we showed how this is accomplished by (dep.fu) while maintaining the invari-
ant. For this we needed a total order on channel-names, so that the machine’s
transitions would preserve the invariants.

The efficiency of subsequent transitions will depend on the shape of the tree.
For instance, if there is a long chain of forwarders from x to y, then every atom

CHAPTER 7. CONCLUSION 131

deployed to x will require a long sequence of migration messages. The shape
of the tree will depend on the total order on names, and also on the sequence
in which fusions happened to be deployed. I find it hard to predict which tree
shapes will appear in practice.

The tree effectively forms a distributed shared state; the state it stores is an
equivalence relation on names. This shared state supports query and update
operations. To update the shared state, a program can deploy an explicit fusion.
(However, the equivalence relation must be monotonically increasing). To query
whether two names are related, a program can deploy an output on one and an
input on the other. (However, while this will yield a positive answer when the
names are related, it will simply do nothing when they are not). The query and
update operations can be handled concurrently.

This shared state is relevant to the discussion from Section 1.5. This dis-
cussion was about how to implement fragmentation within a calculus. One
suggested technique was that each fragment should send its entire environment
on to the next fragment. This suggestion was dismissed on the grounds of cost.
What the shared state provides is essentially this environment, but without the
need to transport it between fragments.

Transitions in calculus and machine. In the explicit fusion calculus, we
generally work in equivalence-classes of terms related by structural congruence.
The machine has a much smaller structural congruence, and instead accom-
plishes most of the work through its transitions. This is because the goal of the
machine is to model an implementation; and structural congruence is hard to
implement.

Therefore, two programs that are related by structural congruence in the
calculus are instead related by a sequence of transitions in the machine (up to
the tree structure of forwarders).

To bridge this gap between calculus and machine, we divided the machine
transitions into two groups, one group ≡−→ corresponding to structural congru-
ence in the calculus, and the other group τ−→ corresponding to reactions in the
calculus. We then introduced strong-weak bisimulation, which is strong with
respect to τ−→ and weak with respect to ≡−→. Although this mixing of strong
and weak is not used elsewhere, it seems a good way to relate a calculus to an
implementation.

Mobility. It is sometimes said that the pi calculus models ‘mobility without
movement’: that it models mobility as the making and breaking of links between
agents, through communication, but without actually modelling the movement
of code. This comment stems from the instinct to add unitary agents into the
calculus, to add locations as primitive entities, and to add new commands for
the movement of agents between locations.

The comment is not true when we implement the pi calculus with the fusion
machine. In the fusion machine, there are no such things as agents, and there
are therefore no links between them. The role of communication is to estab-
lish forwarders; this is done through the (dep.fu) transition. Subsequently, in
the presence of a forwarder, a program fragment can move to a new location.
When we translate the machine back into the pi calculus (Definition 81), code
movement corresponds to alpha-renaming.

CHAPTER 7. CONCLUSION 132

One might also say that the explicit fusion calculus models ‘dataflow without
data flowing’: in rendezvous in the pi calculus, it seems that names flow from
the sender to the receiver. But in the explicit fusion calculus, all that happens
is that the sent names and the received names are fused in the global shared
state. There is no directionality in a fusion.

New and restriction. Section 4.5 outlined three roles for restriction in re-
lation to the pi calculus. When converting a piable term in the explicit fusion
calculus into a term in the pi calculus, each restriction must play exactly one of
the following roles: it can perform the binding in a bound input; it can discharge
an explicit fusion; or it can correspond to a normal restriction in the pi calculus.
Now the pi calculus uses two operators that bind—input and restriction—while
a more parsimonious calculus is possible in which only restriction binds. With
the three roles of restriction in piability, we see precisely how the explicit fusion
calculus makes do with only restriction.

The fusion machine actually has two roles of restriction itself, which are
both mapped to restriction in the explicit fusion calculus. Consider the machine
transition c:[(x)P] −→ (|x′|)c:[P{x′

/x}]. Both sides of the transition correspond
to the same term (x)P in the calculus, up to alpha renaming. But the machine
used one restriction (x)P as a command to create a new name, and it used the
other restriction (|x′|) to record the name that has been created.

Some authors write restriction not as (x)P , but as a command new x in
P . This is a good notation for restriction’s first role, of creating fresh names.
But it is inappropriate for the second role, of recording the old names that have
already been created.

The operation of the fusion machine is not affected by restriction’s second
role. Moreover, Section 6.1 established that restriction’s second role is irrele-
vant for the machine’s bisimulation congruence. In my opinion, the concept of
piability and the design of the fusion machine have helped clarify what we mean
by restriction.

7.2 Assumption

This section is motivated by the problem of adding numerical constants into the
calculus: what does it mean to fuse 1 = 2? The story is told [32] of how the
mathematician G.H. Hardy asserted that anything could be proved from this
equality. He was challenged by a Mr McTaggart to prove, for example, that he
was the Pope. Hardy replied: ‘McTaggart and the Pope are two; and two is
one; therefore McTaggart and the Pope are one.’

In this section I give more formal grounds for not wanting the fusion. This
involves a theory of explicit fusions as guarded commands. Perhaps it might be
easy just to disallow certain fusions by imposing some arbitrary type system;
but the theory in this section will provide a justification and a benchmark for
such a type system.

Let us first recall the theory of guarded commands. This theory was first
introduced by Dijkstra [13], but the version we use here is a generalisation due
to Nelson [49]. Let x range over names, each of which is associated with a
number. Let B range over predicates on names, such as x < 3. Programs P are

CHAPTER 7. CONCLUSION 133

given by

(x)P non-deterministically choose a value for x
P + P non-deterministically choose which program to execute
P.P sequential composition
assertB the program aborts if B does not hold: disaster
assumeB miracle: current execution-trace is only valid if B holds

There are two commands which involve non-deterministic choice. Any given
program therefore has a tree of possible execution traces. The ‘assume’ com-
mand culls those sub-branches that fail to satisfy a particular predicate at some
stage.

In general, we might implement assumption with back-tracking. However,
back-tracking is arduous in an implementation. To avoid it, the language
Juno [28, 50] imposes a syntactic constraint: assume can only come directly
after the relevant non-deterministic choice. Hence, it is easy to look immedi-
ately ahead and make the correct choice. These two programs satisfy Juno’s
constraint:

(x)(assumex=3. P) let x = 3 in P

(assumex=3. P1) + (assumex6=3. P2) if x = 3 then P1 else P2

In the first program, the assumption comes after a non-deterministic choice of
a value for x. In the second, both assumptions come after a non-deterministic
choice as to which branch to take.

I propose that assumptions and guarded commands can be used to interpret
the pi calculus, in the same way. Say that the restriction (x)P chooses some
channel x non-deterministically. It may choose the same channel as one already
existing, or a new channel. The reaction relation means: we can prove that
interaction is always possible, despite the non-determinism. For instance, in
(x)(x | y), interaction might be possible but only if x happened to be initialised
to the same value as y: therefore this term is not part of the reaction relation.
On the other hand, in (x)(x | x), interaction is always possible.

Now the pi calculus has the syntactic constraint that every input name is
bound. This is a syntactic constraint in exactly the same sense as Juno—
it ensures that every assumption is immediately preceded by a relevant non-
deterministic choice. This constraint is similar to the one on piable terms, that
every explicit fusion has at least one of its names bound. To illustrate this, let
B be the predicate that x and y refer to the same channel. We write assumeB
instead of the explicit fusion x y. Consider the pi calculus program ux | u(y).P
translated into the explicit fusion calculus with assumption:

ux | (y)uy.P
≡ (y)(ux | uy.P) interaction is always possible for this term
−→ (y)(assumeB | P) it is easy to pick a y which satisfies B
≡ P{y/x} B implies that x and y refer to the same channel

We see that an explicit fusion in parallel with a term behaves like an assume
command in parallel with a term. Also, note that a match or mismatch operator
prefixing a term behaves like an assume command that prefixes the term.

CHAPTER 7. CONCLUSION 134

Instead of these constraints, it is possible to use backtracking to get out of
any unfulfillable assumption. This is reminiscent of Distributed Logic Program-
ming—a language derived from adding synchronous rendezvous to Prolog [14].
In this language, interaction causes the send pattern to be unified with the
receive pattern, with possible backtracking in each party. The idea of using
guarded commands is also reminiscent of Hoare’s Communicating Sequential
Processes [29], which represents input and output as guarded commands.

We can now answer the initial question regarding what should happen with
the explicit fusion 1 = 2. The answer is that the fusion must never have oc-
curred. If a program reaches that explicit fusion, then its current branch in
the execution trace is not a valid one: it must backtrack, and make different
decisions at the points of non-determinism. Or, since backtracking is arduous,
we might impose some constraints: perhaps constraints on syntax, like Juno
and the pi calculus; or perhaps constraints on reaction, like the fusion calculus;
or perhaps a type system. Then the explicit fusion assumptions can always be
met without backtracking.

7.3 Using the fusion machine

Two questions arise from my work: is it useful to have a concurrent and dis-
tributed implementation of the pi calculus or explicit fusion calculus? And is it
useful to have this particular fusion-machine implementation?

With respect to the second question, note that the pi calculus is not only
a programming language but also a notation to describe our intuitions about
how distributed programs behave—as a parallel collection of agents which inter-
act. The fusion machine, on the other hand, is a parallel collection of channel-
machines, with the programs fragmented between them. What use is it to
implement one intuition with a different intuition?

In fact the fusion machine intuition is already used more widely than the
agent intuition. A conventional imperative program is a collection of subroutines
grouped into modules, with the flow of control jumping between them. And the
standard way to implement subroutines in the pi calculus [43] is as replicated in-
put on a channel. Thus, each module is a collection of co-located channels, with
continuation messages sent between them—like the fusion machine. Effectively,
the fusion machine provides a natural link between conventional programs and
the pi calculus.

Also with respect to the second question, consider the matter of output
guards—that is, output commands followed by some code, such that this code
cannot execute until the output command has successfully completed. It is
partly in order to support these guards efficiently that the fusion machine is
designed as it is, with fragmentation and channel-managers. By contrast, Pict
and the join calculus only provide non-guarding input commands: guarding
output must be encoded, with a loss of efficiency. Turner [68] reports, from his
experience with Pict, that guarding output is in practice rarely used. He also
explains that this experience comes from programming in the lambda calculus,
and then encoding the lambda calculus into Pict: the encoding itself does not
use guarding output. However, I suspect that when we use the pi calculus not to
implement other languages but instead to augment them, then it will be more
common for programmers to use guarding output. Moreover, they can now use

CHAPTER 7. CONCLUSION 135

it safe in the knowledge that the fusion machine implements it efficiently.
With respect to the first question, I believe that a concurrent and distributed

implementation of the pi calculus is practically useful. Let us imagine some fu-
ture programming language which incorporates commands from the pi calculus,
and compare it to conventional imperative languages such as C and Java. Ev-
ery conventional program uses syntactic guards (the semicolon) throughout,
requiring each command to finish before further commands can be executed.
Compilers must try to deduce when this sequencing was intended, and when
it was used merely for lack of any other way to compose commands. But per-
haps, if synchronous rendezvous and parallel composition were as easy to use as
syntactic guards are now, then programmers might use them more frequently—
choosing syntactic guards only when dictated by the program’s logic. Perhaps,
compared to current languages, the resulting programs would be easier to com-
pile and run on multi-processor machines. Certainly they would be easier to
write, and easier to understand.

Bibliography

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.
Journal of Functional Programming, 1(4):375–416, 1991. http:
//research.microsoft.com/Users/luca/Papers/ExplicitSub.pdf

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure
communication. In Proceedings of POPL ’01, pages 104–115. ACM, ACM
Press, 2001. http://portal.acm.org/citation.cfm?id=360213

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Journal of Information and Computation, 148(1):1–70, 1999.
http://research.microsoft.com/~adg/Publications/spi.ps

[4] R. M. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed
pi-calculus (extended abstract). In C. Pandu Rangan, V. Raman, and
R. Ramanujam, editors, Proceedings of FSTTCS ’99, volume 1738 of
Lecture Notes in Computer Science, pages 304–315. Springer-Verlag, 1999.
http:
//www-sop.inria.fr/mimosa/personnel/Gerard.Boudol/rdpi.html

[5] R. M. Amadio and S. Prasad. Localities and failures. In P. S.
Thiagarajan, editor, Proceedings of FSTTCS ’94, volume 880 of Lecture
Notes in Computer Science, pages 205–216. Springer-Verlag, 1994.

[6] M. Berger and K. Honda. The two-phase commitment protocol in an
extended pi-calculus. In Proceedings of EXPRESS ’00, volume 39 of
Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 2000. To appear.
ftp://ftp.dcs.qmw.ac.uk/lfp/martinb/express00.ps.gz

[7] G. Booch. Object-Oriented Analysis and Design with Applications.
Benjamin Cummings, California, second edition, 1994.

[8] M. Boreale and D. Sangiorgi. Some congruence properties for pi-calculus
bisimilarities. Theoretical Computer Science, 198(1–2):159–176, 1998.
ftp:
//ftp-sop.inria.fr/mimosa/personnel/davides/congruence.ps.gz

[9] L. Cardelli. An implementation model of rendezvous communication. In
S. D. Brookes, A. W. Roscoe, and G. Winskel, editors, Seminar on
Concurrency, volume 197 of Lecture Notes in Computer Science, pages
449–457. Springer-Verlag, 1984. http:
//research.microsoft.com/Users/luca/Papers/Rendezvous.A4.pdf

136

http:// research.microsoft.com/ Users/ luca/ Papers/ ExplicitSub.pdf
http:// research.microsoft.com/ Users/ luca/ Papers/ ExplicitSub.pdf
http:// portal.acm.org/ citation.cfm? id=360213
http:// research.microsoft.com/ ~adg/ Publications/ spi.ps
http:// www-sop.inria.fr/ mimosa/ personnel/ Gerard.Boudol/ rdpi.html
http:// www-sop.inria.fr/ mimosa/ personnel/ Gerard.Boudol/ rdpi.html
ftp:// ftp.dcs.qmw.ac.uk/ lfp/ martinb/ express00.ps.gz
ftp:// ftp-sop.inria.fr/ mimosa/ personnel/ davides/ congruence.ps.gz
ftp:// ftp-sop.inria.fr/ mimosa/ personnel/ davides/ congruence.ps.gz
http:// research.microsoft.com/ Users/ luca/ Papers/ Rendezvous.A4.pdf
http:// research.microsoft.com/ Users/ luca/ Papers/ Rendezvous.A4.pdf

BIBLIOGRAPHY 137

[10] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000. http://research.microsoft.com/
Users/luca/Papers/MobileAmbients.A4.ps

[11] L. Cardelli and R. Pike. Squeak: A language for communicating with
mice. In B. A. Barsky, editor, Proceedings of SIGGRAPH ’85, volume 19,
pages 199–204. ACM Press, 1985.
http://research.microsoft.com/Users/luca/Papers/Squeak.pdf

[12] A. de Saint-Exupéry. Le Petit Prince. Gallimard, Paris, 1946.

[13] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM, 18(8):453–457,
1975. http://portal.acm.org/citation.cfm?id=360975

[14] A. Eliens. DLP: A Language for Distributed Logic Programming. Wiley,
Kansas, 1992.

[15] J. Engelfriet and T. Gelsema. Multisets and structural congruence of the
pi-calculus with replication. Theoretical Computer Science,
211(1–2):311–337, 1999. http:
//www.elsevier.com/gej-ng/10/41/16/137/17/24/abstract.html

[16] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile
Programming. PhD thesis, Ecole Polytechnique, France, 1998.
http://www.inria.fr/rrrt/tu-0556.html

[17] C. Fournet, G. Gontheir, J.-J. Lévy, L. Maranget, and D. Rémy. A
calculus of mobile agents. In U. Montanari and V. Sassone, editors,
Proceedings of CONCUR ’96, volume 1119 of Lecture Notes in Computer
Science, pages 406–421. Springer-Verlag, 1996. http://research.
microsoft.com/~fournet/papers/calculus-of-mobile-agents.ps

[18] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and
the join-calculus. In Proceedings of POPL ’96, pages 372–385. ACM,
ACM Press, 1996. http://research.microsoft.com/~fournet/papers/
reflexive-cham-join-calculus.ps

[19] C. Fournet, Lévy, and A. Schmitt. An asynchronous, distributed
implementation of mobile ambients. In J. van Leeuwen, O. Watanabe,
M. Hagiya, P. D. Mosses, and T. Ito, editors, Proceedings of IFIP TCS
2000, volume 1872 of Lecture Notes in Computer Science, pages 348–364.
Springer-Verlag, 2000. http://research.microsoft.com/~fournet/
papers/implementation-of-ambients-tcs.pdf

[20] G. Frege. Über sinn und bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, 100:25–50, 1892. Translation in The Frege Reader,
ed. M. Beaney, Blackwell Publishers, Oxford, 1997.

[21] Y. Fu. The chi-calculus. In Proceedings of ICAPDC ’97, pages 74–81.
IEEE, Computer Society Press, 1997.

http:// research.microsoft.com/ Users/ luca/ Papers/ MobileAmbients.A4.ps
http:// research.microsoft.com/ Users/ luca/ Papers/ MobileAmbients.A4.ps
http:// research.microsoft.com/ Users/ luca/ Papers/ Squeak.pdf
http:// portal.acm.org/ citation.cfm? id=360975
http:// www.elsevier.com/ gej-ng/ 10/ 41/ 16/ 137/ 17/ 24/ abstract.html
http:// www.elsevier.com/ gej-ng/ 10/ 41/ 16/ 137/ 17/ 24/ abstract.html
http:// www.inria.fr/ rrrt/ tu-0556.html
http:// research.microsoft.com/ ~fournet/ papers/ calculus-of-mobile-agents.ps
http:// research.microsoft.com/ ~fournet/ papers/ calculus-of-mobile-agents.ps
http:// research.microsoft.com/ ~fournet/ papers/ reflexive-cham-join-calculus.ps
http:// research.microsoft.com/ ~fournet/ papers/ reflexive-cham-join-calculus.ps
http:// research.microsoft.com/ ~fournet/ papers/ implementation-of-ambients-tcs.pdf
http:// research.microsoft.com/ ~fournet/ papers/ implementation-of-ambients-tcs.pdf

BIBLIOGRAPHY 138

[22] Y. Fu. A proof-theoretical approach to communication. In P. Degano,
R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings of ICALP
’97, volume 1256 of Lecture Notes in Computer Science, pages 325–335.
Springer-Verlag, 1997.

[23] Y. Fu. Open bisimulations on chi processes. In J. C. M. Baeten and
S. Mauw, editors, Proceedings of CONCUR ’99, volume 1664 of Lecture
Notes in Computer Science, pages 304–319. Springer-Verlag, 1999.

[24] Y. Fu and Z. Yang. Chi calculus with mismatch. In C. Palamidessi,
editor, Proceedings of CONCUR 2000, volume 1877 of Lecture Notes in
Computer Science, pages 596–610. Springer-Verlag, 2000.

[25] P. Gardner and L. Wischik. Explicit fusions. In M. Nielsen and B. Rovan,
editors, Proceedings of MFCS 2000, volume 1893 of Lecture Notes in
Computer Science, pages 373–382. Springer-Verlag, 2000.
http://www.wischik.com/lu/research/explicit-fusions.html

[26] A. Giacalone, P. Mishra, and S. Prasad. FACILE: A symmetric
integration of concurrent and functional programming. International
Journal of Parallel Programming, 18(2):121–160, 1989.

[27] O. Group. DCE 1.1: Remote procedure call. Specification C706, Open
Group, 1997. http://www.opengroup.org/onlinepubs/009629399/

[28] A. Heydon and G. Nelson. The juno-2 constraint-based drawing editor.
Research Report 131a, Digital Systems Research Center, 1994.
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/
abstracts/src-rr-131a.html

[29] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, New
Jersey, 1985.

[30] K. Honda. Elementary structures in process theory (1): Sets with
renaming. Journal of Mathematical Structures in Computer Science,
10:617–631, 2000. ftp://ftp.dcs.qmw.ac.uk/lfp/kohei/ps.ps.gz

[31] K. Honda and N. Yoshida. On reduction-based process semantics.
Theoretical Computer Science, 152(2):437–486, 1995.
ftp://ftp.dcs.qmw.ac.uk/lfp/kohei/OLD/fst93.ps.gz

[32] H. Jeffreys. Scientific Inference. Cambridge University Press, second
edition, 1957.

[33] C. Laneve, J. Parrow, and B. Victor. Solo diagrams. In Proceedings of
TACS 2001, 2001. To appear.
http://www.docs.uu.se/~victor/tr/solodiagrams.shtml

[34] C. Laneve and B. Victor. Solos in concert. In J. Wiederman, P. van
Emde Boas, and M. Nielsen, editors, Proceedings of ICALP ’99, volume
1644 of Lecture Notes in Computer Science, pages 513–523.
Springer-Verlag, 1999.
http://www.docs.uu.se/~victor/tr/solos.shtml

http:// www.wischik.com/ lu/ research/ explicit-fusions.html
http:// www.opengroup.org/ onlinepubs/ 009629399/
http:// gatekeeper.dec.com/ pub/ DEC/ SRC/ research-reports/ abstracts/ src-rr-131a.html
http:// gatekeeper.dec.com/ pub/ DEC/ SRC/ research-reports/ abstracts/ src-rr-131a.html
ftp:// ftp.dcs.qmw.ac.uk/ lfp/ kohei/ ps.ps.gz
ftp:// ftp.dcs.qmw.ac.uk/ lfp/ kohei/ OLD/ fst93.ps.gz
http:// www.docs.uu.se/ ~victor/ tr/ solodiagrams.shtml
http:// www.docs.uu.se/ ~victor/ tr/ solos.shtml

BIBLIOGRAPHY 139

[35] F. Le Fessant and L. Maranget. Compiling join-patterns. In U. Nestmann
and B. C. Pierce, editors, Proceedings of HLCL ’98, volume 16.3 of
Electronic Notes in Theoretical Computer Science. Elsevier, 1998.
http://www.elsevier.nl/locate/entcs/volume16.3.html

[36] P. J. Leach. UUIDs and GUIDs. Microsoft, 1998. http:
//www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt

[37] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive
systems. In C. Palamidessi, editor, Proceedings of CONCUR 2000,
volume 1877 of Lecture Notes in Computer Science, pages 243–258.
Springer-Verlag, 2000. http:
//pauillac.inria.fr/~leifer/articles/derbc-concur-final.pdf

[38] L. Leth and B. Thomsen. Some facile chemistry. Formal Aspects of
Computing, 7(E):67–110, 1995.
http://www.dcs.gla.ac.uk/~jon/facs/e-papers/

[39] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, New York, 1995.

[40] M. Merro. On the expressiveness of chi, update, and fusion calculi. In
C. Palamidessi and I. Castellani, editors, Proceedings of EXPRESS ’98,
volume 16.2 of Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, 1998.
http://www.elsevier.nl/locate/entcs/volume16.2.html

[41] M. Merro. On equators in asynchronous name-passing calculi without
matching. In I. Castellani and B. Victor, editors, Proceedings of
EXPRESS ’99, volume 27 of Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, 1999.
http://www.elsevier.nl/locate/entcs/volume27.html

[42] M. Merro. Locality in the pi-calculus and applications to distributed
objects. PhD thesis, École des Mines, France, 2000.
http://www.cogs.susx.ac.uk/users/massimo/phdthesis.ps.gz

[43] R. Milner. Functions as processes. Journal of Mathematical Structures in
Computer Science, 2(2):119–141, 1992.

[44] R. Milner. Calculi for interaction. Acta Informatica, 33(8):707–737, 1996.
ftp://ftp.cl.cam.ac.uk/users/rm135/ac9.ps

[45] R. Milner. Communicating and mobile systems: the Pi-calculus.
Cambridge University Press, 1999.

[46] R. Milner. Bigraphical reactive systems. In K. G. Larsen and M. Nielsen,
editors, Proceedings of CONCUR 2001, volume 2154 of Lecture Notes in
Computer Science, pages 16–35. Springer-Verlag, 2001.
http://www.cl.cam.ac.uk/users/rm135/bigraphs.pdf

[47] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
I/II. Journal of Information and Computation, 100(1):1–40,41–77, 1992.
http:
//www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-85/

http:// www.elsevier.nl/ locate/ entcs/ volume16.3.html
http:// www.opengroup.org/ dce/ info/ draft-leach-uuids-guids-01.txt
http:// www.opengroup.org/ dce/ info/ draft-leach-uuids-guids-01.txt
http:// pauillac.inria.fr/ ~leifer/ articles/ derbc-concur-final.pdf
http:// pauillac.inria.fr/ ~leifer/ articles/ derbc-concur-final.pdf
http:// www.dcs.gla.ac.uk/ ~jon/ facs/ e-papers/
http:// www.elsevier.nl/ locate/ entcs/ volume16.2.html
http:// www.elsevier.nl/ locate/ entcs/ volume27.html
http:// www.cogs.susx.ac.uk/ users/ massimo/ phdthesis.ps.gz
ftp:// ftp.cl.cam.ac.uk/ users/ rm135/ ac9.ps
http:// www.cl.cam.ac.uk/ users/ rm135/ bigraphs.pdf
http://www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-85/
http://www.lfcs.informatics.ed.ac.uk/reports/89/ECS-LFCS-89-85/

BIBLIOGRAPHY 140

[48] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Proceedings of ICALP ’92, volume 623 of Lecture Notes in Computer
Science, pages 685–695. Springer-Verlag, 1992.
ftp://ftp-sop.inria.fr/mimosa/personnel/davides/bn.ps.gz

[49] G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on
Programming Languages and Systems, 11(4):517–561, 1989.
http://www.acm.org/pubs/toc/Abstracts/0164-0925/69559.html

[50] G. Nelson and A. Heydon. Juno-2 language definition. Technical Note
1997-009, Digital Systems Research Center, 1997.
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/
abstracts/src-tn-1997-009.html

[51] J. Parrow and B. Victor. The update calculus. In M. Johnson, editor,
Proceedings of AMAST ’97, volume 1349 of Lecture Notes in Computer
Science, pages 409–423. Springer-Verlag, 1997.
http://www.docs.uu.se/~victor/tr/upd.html

[52] J. Parrow and B. Victor. The fusion calculus: Expressiveness and
symmetry in mobile processes. In Proceedings of LICS ’98, pages 176–185.
IEEE, Computer Society Press, 1998.
http://www.docs.uu.se/~victor/tr/fusion.shtml

[53] J. Parrow and B. Victor. The tau-laws of fusion. In D. Sangiorgi and
R. de Simone, editors, Proceedings of CONCUR ’98, volume 1466 of
Lecture Notes in Computer Science, pages 99–114. Springer-Verlag, 1998.
http://www.docs.uu.se/~victor/tr/taufusion.html

[54] B. C. Pierce. The pict programming language. homepage.
http://www.cis.upenn.edu/~bcpierce/papers/pict/Html/Pict.html

[55] B. C. Pierce. Pict: An experiment in concurrent language design. Pict
version 3.6 tutorial, University of Edinburgh, 1994.

[56] B. C. Pierce and D. N. Turner. Pict: A programming language based on
the pi-calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,
Language and Interaction: Essays in Honour of Robin Milner,
Foundations of Computing, pages 455–494. MIT Press, 2000.
http://www.cis.upenn.edu/~bcpierce/papers/pict-design.ps

[57] J. Riely and M. Hennessy. A typed language for distributed mobile
processes. In Proceedings of POPL ’98, pages 378–390. ACM, ACM Press,
1998. http://portal.acm.org/citation.cfm?id=268978

[58] D. Sangiorgi. Pi-calculus, internal mobility and agent-passing calculi.
Theoretical Computer Science, 167(1–2):235–275, 1996.
http://www.inria.fr/RRRT/RR-2539.html

[59] D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta
Informatica, 33:69–97, 1996.
ftp://ftp-sop.inria.fr/mimosa/personnel/davides/sub.ps.gz

ftp:// ftp-sop.inria.fr/ mimosa/ personnel/ davides/ bn.ps.gz
http:// www.acm.org/ pubs/ toc/ Abstracts/ 0164-0925/ 69559.html
http:// gatekeeper.dec.com/ pub/ DEC/ SRC/ technical-notes/ abstracts/ src-tn-1997-009.html
http:// gatekeeper.dec.com/ pub/ DEC/ SRC/ technical-notes/ abstracts/ src-tn-1997-009.html
http:// www.docs.uu.se/ ~victor/ tr/ upd.html
http:// www.docs.uu.se/ ~victor/ tr/ fusion.shtml
http:// www.docs.uu.se/ ~victor/ tr/ taufusion.html
http:// www.cis.upenn.edu/ ~bcpierce/ papers/ pict/ Html/ Pict.html
http:// www.cis.upenn.edu/ ~bcpierce/ papers/ pict-design.ps
http:// portal.acm.org/ citation.cfm? id=268978
http:// www.inria.fr/ RRRT/ RR-2539.html
ftp:// ftp-sop.inria.fr/ mimosa/ personnel/ davides/ sub.ps.gz

BIBLIOGRAPHY 141

[60] D. Sangiorgi and D. Walker. The Pi-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[61] J. S. Schwarz. Distributed synchronization of communicating sequential
processes. Research Report 56, Department of Artificial Intelligence,
University of Edinburgh, 1983.

[62] P. Sewell. On implementations and semantics of a concurrent
programming language. In A. Mazurkiewicz and J. Winkowski, editors,
Proceedings of CONCUR ’97, volume 1243 of Lecture Notes in Computer
Science, pages 391–405. Springer-Verlag, 1997.
http://www.cl.cam.ac.uk/~pes20/pict9-crc11pt.ps.gz

[63] P. Sewell. From rewrite rules to bisimulation congruences. Technical
Report 56, Computer Laboratory, University of Cambridge, 1998. To
appear in a special issue of TCS for CONCUR ’98.
http://www.cl.cam.ac.uk/~pes20/labels-tcs-final.ps.gz

[64] P. Sewell, P. Wojciechowski, and B. Pierce. Location-independent
communication for mobile agents: a two-level architecture. Technical
report, University of Cambridge, 1999.
http://www.cl.cam.ac.uk/users/pes20/nomadicpict.html

[65] C. D. Simak. City. The Science Fiction Book Club, London, 1952.

[66] W. R. Stevens. UNIX Network Programming: Networking APIs: Sockets
and XTI. Prentice Hall, New Jersey, 1997.

[67] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215–225, 1975.
http://portal.acm.org/citation.cfm?id=321884

[68] D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation.
PhD thesis, University of Edinburgh, 1996. http:
//www.lfcs.informatics.ed.ac.uk/reports/96/ECS-LFCS-96-345/

[69] B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. PhD thesis, Department of Computer Systems, Uppsala
University, Sweden, 1998.
http://www.docs.uu.se/~victor/thesis.shtml

[70] B. Victor and J. Parrow. Concurrent constraints in the fusion calculus. In
K. G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of ICALP
’98, volume 1443 of Lecture Notes in Computer Science, pages 455–469.
Springer-Verlag, 1998.
http://www.docs.uu.se/~victor/tr/ccfc.shtml

[71] P. T. Wojciechowski. Nomadic Pict: Language and Infrastructure Design
for Mobile Computation. PhD thesis, Computer Laboratory, University of
Cambridge, 2000.
http://lsewww.epfl.ch/~pawel/Papers/cl-tr-492.pdf

http:// www.cl.cam.ac.uk/ ~pes20/ pict9-crc11pt.ps.gz
http:// www.cl.cam.ac.uk/ ~pes20/ labels-tcs-final.ps.gz
http:// www.cl.cam.ac.uk/ users/ pes20/ nomadicpict.html
http:// portal.acm.org/ citation.cfm? id=321884
http:// www.lfcs.informatics.ed.ac.uk/ reports/ 96/ ECS-LFCS-96-345/
http:// www.lfcs.informatics.ed.ac.uk/ reports/ 96/ ECS-LFCS-96-345/
http:// www.docs.uu.se/ ~victor/ thesis.shtml
http:// www.docs.uu.se/ ~victor/ tr/ ccfc.shtml
http:// lsewww.epfl.ch/ ~pawel/ Papers/ cl-tr-492.pdf

	Abstract
	Synchronous rendezvous
	The pi calculus
	Pi calculus variations
	Uniprocessor pi implementation
	Channel-managers and pre-deployment
	Fragmentation
	Forwarders and fusions
	Whether explicit locations are needed

	Explicit fusions
	Explicit fusion calculus
	Explicit fusion calculus, formally
	Equivalence relation
	Work related to fusions

	Bisimulation for the explicit fusion calculus
	Overview of bisimulation
	Labels and interfaces
	Ground bisimulation
	Fusion transitions
	Efficient bisimulation
	Structural labels
	Ground congruence results
	Barbed bisimulation
	Weak bisimulation

	Embedding into explicit fusions
	Overview
	The fusion calculus recalled
	Full abstraction for fusion calculus
	The pi calculus recalled
	Embedding the pi calculus

	The fusion machine
	Operation
	A registry of free names
	Deployment
	Replication
	Co-location
	Fairness and failure

	Theory of fusion machine
	Overview
	The machine calculus
	Observation relation
	Machine bisimulation
	Correctness for the explicit fusion calculus
	Correctness for the pi calculus
	The located machine
	Flattening
	Correctness of flattening
	Efficiency of flattening

	Conclusions
	Review
	Assumption
	Using the fusion machine

