
The Fusion Machine
(extended abstract)

Philippa Gardner Cosimo Laneve Lucian Wischik

March 27, 2002

Abstract. We present a new model for the distributed implementation of pi-
like calculi. This model is a close match to a variety of calculi, and so permits
strong correctness results that are easy to prove. In particular, we describe a dis-
tributed abstract machine called the fusion machine. In it, only channels exist
at runtime. It uses a form of concurrent constraints called fusions—equations
on channel names—which it stores as trees of forwarders between channels. We
implement in the fusion machine a solos calculus with explicit fusions. There are
encodings into this calculus from the pi calculus and the explicit fusion calculus.
We quantify the efficiency of the latter by means of (co-)locations.

1 Introduction

The pi calculus has become a dominant calculus in the field of concurrency,
with many variants. Despite this, there have been only two distributed imple-
mentations of it: Facile [7] which integrates it with the lambda calculus; and
an encoding into the join calculus [4] which is then implemented on Jocaml [3].
Other implementations [20, 5] have not used the pi calculus for distributed in-
teraction, for two reasons. First, synchronous rendezvous (as found in the pi
calculus) seemed awkward to implement. Second, the pi calculus has no built-in
notation for locations. Behind both objections there is the implicit assumption
of a particular implementation model: that groups of programs exist at runtime
at locations, and interact with each other.
However, there is a different implementation model for process calculi which

seems to avoid the objections, and which leads to a much closer connection
between implementation and calculi. In this paper we describe the model by
presenting the fusion machine, a distributed abstract machine. We substanti-
ate the claim of ‘closeness’ with two proofs of barbed bisimulation congruence,
between calculi and the abstract machine, which are stronger than equivalent
results for other implementations. Our motivation is that pi-like calculi seem
so easy to use for concurrent and distributed programming that they are worth
implementing directly.
In the fusion machine, only channels exist at runtime. Channels may be

remote, or co-located with other channels. Each channel may contain fragments
of code—either waiting to be executed, or waiting to rendezvous at the chan-
nel. Execution amounts to the heating of a term (a directed implementation of
structural congruence). In this respect, the fusion machine is like a distributed

1

version of the channel machine first described by Cardelli [2] and later used in
Pict [13, 16]. In the fusion machine, rendezvous can result in explicit fusions,
namely equational concurrent constraints on names. Upon heating, these give
rise to forwarders between channels.
The fusion machine differs from the Facile and Jocaml machines. Facile uses

two classes of distributed entities: (co-)located programs which execute, and
channel-managers which mediate interaction. This forces it to use a hand-shake
discipline for rendezvous. Jocaml simplifies the model by combining programs
with channel-managers. However, it uses a quite different form of interaction,
not so closely related to pi calculus rendezvous. It also forces a coarser gran-
ularity of distribution in which each distributed entity must manage several
channels. Like Jocaml, the fusion machine combines programs with channel-
managers. Unlike it, the fusion machine has finer granularity and uses the same
form of interaction as the pi calculus.
The fusion machine is a flexible machine able to implement directly—without

encoding—several pi-like calculi and (following [17]) some concurrent constraint
calculi. In particular, it implements the synchronous and asynchronous pi cal-
culus, and the explicit fusion calculus [6]. Because the fusion machine is so close
to the calculi, strong congruence results are possible and easy to prove. We be-
lieve that the machine can be adapted to provide a distributed implementation
model for other pi-like calculi as well, and to evaluate the efficiency of encodings
and highlight problems. For instance, we find that the fusion calculus [11] and
the solos calculus [9] are difficult to implement because they only allow reaction
after a global search for restricted names. They can be seen as ‘lazy’ models for
the fusion machine. Using the machine as an implementation model, it should
also be possible to see how a variety of run-time failures can be represented as
transitions in a calculus.
In the fusion machine, continuation-closures are an issue. To understand

why, consider first the single-processor machine used by Cardelli and in Pict.
In this machine, after a program is involved in rendezvous, a pointer to its
continuation-closure is sent on to another channel for subsequent rendezvous.
But the fusion machine, because it is distributed, would require the entire contin-
uation closure to be sent between channel-managers (rather than just a pointer).
However, we wish to keep messages short. Therefore, we focus on a sub-calculus
with limited continuations—the explicit solos calculus. Nevertheless, we demon-
strate that the explicit solos calculus is as expressive as the full calculus with
continuations. This is provided by an encoding which is uniform and strongly
barbed congruent. The encoding has been inspired by earlier works in [12, 9].
We also introduce a formal technique to argue about efficiency in the ma-

chine, in terms of the number of network messages required to execute a pro-
gram. As an example, we quantify the efficiency impact of our encoding into
explicit solos: it does no worse than doubling the total message count.
We have built a prototype implementation of the fusion machine [19], and we

are currently working on a full distributed implementation. We also plan to build
richer programming languages based on the machine, possibly incorporating
transactions, failures and migration.

The structure of the paper is as follows. Section 2 describes a distributed version
of the channel-machine, closely connected to the pi calculus. Section 3 presents
the fusion machine, which is closer to the explicit fusion calculus and solos

2

calculus. Section 4 gives it a formal theory, and includes full abstraction results.
Section 5 adds a model of co-location to the machine, and uses this in a proof
of efficiency.

2 The distributed channel machine

Cardelli described an abstract machine for synchronous rendezvous which runs
in a single thread of execution, in a shared address space. It contains channel-
managers, each of which contains pointers to programs; these programs are
waiting to rendezvous on the channel. It also contains a deployment buffer
of pointers to programs ready to be executed. The mode of operation of the
machine is to move pointers between the channels and the deployment buffer.
To make it distributed, we instead assume a collection of located channel-

managers which run in parallel and which interact. Each channel-manager has
its own thread of execution, its own address space and its own deployment
buffer. The mode of operation of a channel-manager is either to send some
fragments across the network to other channel-managers, or to execute other
fragments locally.
Assume a set of channel names ranged over by u, v, w, x, y, z. These might

be Internet Protocol numbers and port numbers. At each location there is a
channel-manager for exactly one channel name. We therefore identify locations,
channels and names. Each channel-manager is made from two parts: atoms (A)
which are waiting to rendezvous on the channel, and a deployment buffer (D)
of terms ready to be executed. We picture it as follows:

u

A

D

name of this channel-manager

atoms

deployment buffer

The atoms are a collection of output atoms outx.P and a separate collection of
input atoms in(x).P . In general they may be polyadic (communicating several
names); but in this section we stick to monadic (single names) atoms for sim-
plicity. The deployment buffer is a collection of terms (in this section, terms in
the pi calculus).
As an example, the following machine is one representation of the pi calculus

program ux.P | u(y).Q | v x.R | v(y).S. Observe that each action ux.P is
represented either as an atom at location u, or in the deployment buffer of any
location.

u

outx.P
in(y).Q
v x.R

v

in(y).S

−
There are two kinds of transition for each channel-manager. First, two

matching atoms at the same location can react :
u

outx.P
in(y).Q;A

D

→

u

A

D;P ;Q{x/y}
(react)

3

(If a replicated input or output atom were involved in the reaction, then a copy
of it would be left behind.) Second, program fragments from the deployment
buffer might be deployed. This is also called heating in the process calculus
literature.

u

A

P |Q;D
⇀

u

A

D;P ;Q
(dep.par)

u

A

0;D
⇀

u

A

D

(dep.nil)

u

A

v x.P ;D

v

A′

D′
⇀

u

A

D

v

outx.P
A′

D′
(dep.out)

u

A

v(x).P ;D

v

A′

D′
⇀

u

A

D

v

in(x).P
A′

D′
(dep.in)

These heating transitions are all straightforward. They take a program fragment
from the deployment buffer, and either break it down further or send it to the
correct place on the network. Cardelli’s non-distributed machine uses similar
rules with minor differences: it uses just a single deployment buffer shared by all
channel-managers; and because it uses a shared address space, it merely moves
pointers rather than entire program fragments.
As for the restriction operator (z)P , it has three roles. First, it is a command

which creates a new, globally unique channel—a fresh name. Second, through
rules for alpha-renaming and scope extrusion, it indicates that an existing name
should be understood to be globally unique, even though it might be syntac-
tically written with a non-unique symbol. This second role is not relevant to
an implementation. Third, it indicates that an existing channel is private, so
that a separately-compiled program cannot refer to it by name. For example, it
might mean that a machine is not listed in the Internet’s Domain Name Service.
We will write (|z|) to indicate a channel z that is not listed. The deployment of
restrictions is as follows:

u

A

(z)P ;D
⇀

u

A

P{z′
/z};D

(|z′|)

−
−

z′ fresh (dep.new)

Theorem 1 (Full abstraction) Two programs are (strongly barbed) congru-
ent in the pi calculus if and only if they are (strongly barbed) congruent in the
distributed channel machine.

4

This straightforward theorem holds for both the single-processor channel ma-
chine and the distributed channel-machine, but as far as we know it has not
been given before in the literature. (Cardelli’s description of the channel ma-
chine anticipated the pi calculus by several years.) We provide the proof in the
appendix. Sewell has given a weaker result for the version of the machine used
in Pict [14].
We remark that the full abstraction result for the join calculus is weaker

than Theorem 1. This is because the join calculus encodes each pi channel
with two join calculus channels that obey a particular protocol. Without a
firewall, an encoded program would be vulnerable to any context which violates
the protocol. Technically, the join calculus encoding is non-uniform as defined
by Palamidessi [10]. As for the channel machine, we encode a pi-calculus term
P by deploying it in a dummy machine x[P]. Strictly speaking this is also a
non-uniform encoding—but we could make it uniform by adding a structural
rule x[P], x[Q] ≡ x[P ;Q]. Such a rule would be usual in a calculus, but is not
relevant in an implementation where different machines have different names by
construction. Therefore we do not use it.

Efficiency of continuations

This distributed version of the channel machine suffers from an efficiency prob-
lem. Consider for example the program u .v .x .y | u.v.x.y.P . In the machine,
the continuation P would be transported first to u, then v, then x, then y. This
is undesirable if the continuation P is large.
There have been two encodings of the pi calculus into a limited calculus

without nested continuations. These might solve the efficiency problem. The
first encoding, by Parrow [12], uses a sub-calculus of the pi calculus which uses
only trios u(x̃).v(y).w yx̃ and u(x̃).v y.w x̃. An encoded term could then be
executed directly on the distributed channel machine. Note that this encoding
amounts to transporting the entire environment to every continuation.
The second encoding is based upon the fusion calculus of Parrow and Vic-

tor [11], a calculus in which the input command uỹ.P is not binding. The
encoding [9] uses the sub-calculus with only solos u x̃ and u x̃. It uses the
reaction relation

(z̃)(u x̃ | uỹ | R) → Rσ

where every equivalence class generated by x̃ = ỹ has exactly one element not
in z̃, and the substitution σ collapses each equivalence class to its one element.
A single-processor implementation of solos has been described [8]. However,

it seems difficult to make a distributed implementation. This is because its reac-
tion is not local: the channel-manager at u must look in the global environment
to find sufficient names (|z̃|) before it can allow reaction. Instead, we implement
the solos calculus with the explicit fusions of Gardner and Wischik [6]. This
allows local reaction as follows:

u x̃ | u ỹ | R → x̃ ỹ | R.

The term x̃ ỹ is called an explicit fusion. It has delayed substitutive effect on the
rest of the term R. In this respect it is similar to explicit substitutions [1]. As
an example, in ux | v y | u v, the atom on u may be renamed to v. This yields

5

v x | v y | u v. In contrast to Parrow’s trios (which send the entire environment
to every continuation), explicit fusions amount to a shared environment.
In fact, we prefer to use terms u x̃.φ and u x̃.φ where φ is an explicit fusion

continuation—instead of the arbitrary continuations of the channel machine, or
the triple continuations of trios, or the empty continuations of the solos calcu-
lus. Technically, these fusion continuations allow for an encoding of arbitrary
continuations that is uniform and a strong bisimulation congruence (Section 5).

3 Fusion machine

In general, explicit fusions generate an equivalence relation on names such that
any related names may react together. However, in our distributed setting,
different names correspond to channel managers at different locations. If two
(remote) atoms are related by the equivalence relation, we must send them to
a common location in the network so they can react together. The decision as
to where to send them must be taken locally. The problem is to find a data
structure and algorithm that allows such local decisions.
The data structure we use to represent each equivalence class is a directed

tree. Then each channel can send its atoms to its parent, and related atoms are
guaranteed to arrive eventually at a common ancestor. To store this tree, let
each channel-manager contain a fusion pointer to its parent:

u

F

A

D

name of this channel-manager

fusion-pointer

atoms

deployment buffer

The rule for sending an atom to a parent is called migration. (We write m
to stand for either in or out).

u

v

mx.φ
A
D

v

F ′

A′

D′
⇀

u

v

A

D

v

F ′

mx.φ
A′

D′
(migrate)

To update the tree (i.e. to deploy a fusion term), we use a distributed
version of Tarjan’s union find algorithm [15]. This assumes a total order on
names, perhaps arising from their Internet Protocol number and port number.
The algorithm is implemented with just a single heating rule:

u

F

A

x y; D

x

z

A′

D′
⇀

u

F

A

D

x

y

A′

y z; D′
(dep.fu)

where x < y and, if x had no fusion pointer z originally, then we omit y z from
the result. This rule amounts to u sending to x the message “fuse yourself to
y”. To understand this rule, note that it preserves the invariant that the tree

6

of names respects the total order on names, with greater names closer to the
root. Therefore, each (dep.fu) transition takes a fusion progressively closer to
the root, and the algorithm necessarily terminates. The effect is a distributed,
concurrent algorithm for merging two trees.
Finally, we give the modified reaction rule which works with non-binding

input and output.

u

F

outx.φ
iny.ψ; A

D

→

u

F

A

x y;φ;ψ,D

(react)

The following worked example illustrates ux | u y | x | y →∗ x y.

u

−
inx
outy
−

x

−
out

−

y

−
in

−

react→

u

−
−
x y

x

−
out

−

y

−
in

−

dep.fu
⇀

u

−
−
−

x

y

out

−

y

−
in

−

migrate
⇀

u

−
−
−

x

y

−
−

y

−
out
in
−

react→

u

−
−
−

x

y

−
−

y

−
−
−

Replication

We ultimately imagine a hybrid machine which uses both continuations (as in
the previous section) and fusions (as in this section). It will use continuations for
guarded replication, and perhaps also when the continuations are small enough
to be efficient; at other times it will use fusions. The two areas are largely
unrelated. Therefore, for simplicity, our formal treatment of the machine (next
section) omits replication and continuations. A formal account of the full hybrid
machine may be found in [18]. Also, the efficiency results in Section 5 refer to
the hybrid machine.
It is possible to implement replication without continuations, as shown in [9].

First, encode the guarded replication !u(x).P as !(z̃)(u x̃ | P ′), where u x̃ is the
only unrestricted solo. Then remove the structural rule !P ≡ P |!P and deal
with reaction by means of ad-hoc rules—for instance, u y | !(x)(ux | P) reduces
to P{y/x} | !(x)(ux | P). In the machine, this would require a new form of
atom !(inx|P). Its implementation would be substantially the same as those for
guarded replication !inx.P .

7

Parrow’s trios show how the size of a guarded replication !inx.P can be kept
small [12]. A similar result [8] applies to solo replication !(inx|P).

4 Fusion machine theory

We now develop a formalism for the fusion machine. We use this to prove that
it is a fully abstract implementation of the explicit solos calculus (Table 1). For
simplicity, we consider the calculus without replication.
We assume a countably infinite set N of names with a total order, ranged

over by u,v,w,x,y,z. Let p range over {−}∪N , denoting pointers which may be
nil. We use the abbreviation x̃ for tuples x1, · · · , xn, and x̃ ỹ for x1 y1| . . . |xn yn.
Let φ, ψ range over explicit fusions x̃ ỹ, and let m range over {out, in}.
Definition 2 (Fusion machine) Fusion machines M , bodies B, and terms P
are defined by the following grammar:

M ::= 0
∣∣ x[p:B]

∣∣ (|x|)[p:B]
∣∣ M,M (machines)

B ::= outx̃.φ
∣∣ inx̃.φ

∣∣ P
∣∣ B;B (bodies)

P ::= 0
∣∣ x y

∣∣ u x̃.φ
∣∣ u x̃.φ

∣∣ (x)P
∣∣ P |P (terms)

The basic channel-manager x[p:B] denotes a channel-manager at channel x
containing a fusion pointer to p and a body B. This body is an unordered
collection of atoms mx̃.φ and terms P ; it combines the atoms and deployment
buffer of the previous section. The local channel-manager (|x|)[p:B] denotes a
channel-manager where the name x is not visible outside the machine. When
not relevant, we omit parentheses (|·|) to address generically channel managers
which may be local or global. We also omit the fusion-pointer x[B] to stand
for a machine with some unspecified fusion pointer. We write chanM to denote
the set of names of all channel-managers in the machine, and lchanM for the
names of only the local channel-managers. We write x[] for x[0]. In terms, the
restriction operator (x)P binds x in P ; x is free in a term if it occurs unbound.
We write fnP to denote the set of free names in P .
There are two well-formedness conditions on machines. First, recall from the

previous section that there is exactly one channel-manager per channel. In the
calculus, we say that a machine x1[B1], · · · , xn[Bn] is singly-defined when i
= j
implies xi
= xj . Second, it does not make sense to write a program that refers
to a machine which does not exist. We say that a machine is complete when
it has no such ‘dangling pointers’. Formally, define ptrM to be the smallest
set containing all free names in all terms in the machine, and all non-nil fusion
pointers, and all names occurring in any atom mx̃.φ. Then a machine M is
complete if ptrM ⊆ chanM . A machine is well-formed when it is both singly-
defined and complete. In the following, we consider only well-formed machines.
In particular, when we write x[P] it is shorthand for the (well-formed) machine
x[-:P], y1[], · · · yn[] where {y1, · · · , yn} = fn(P)\x. Here, x stands for an
arbitrary location where the user of the machine first deploys the program P .

Definition 3 (Structural congruence) The structural congruence between
machines and atoms ≡ is the least congruence and equivalence satisfying

1. Abelian monoid laws with 0 as unit
M,0 ≡ M M1,M2 ≡ M2,M1 M1, (M2,M3) ≡ (M1,M2),M3

B;0 ≡ B B1;B2 ≡ B2;B1 B1; (B2;B3) ≡ (B1;B2);B3

8

Terms P and contexts E in the explicit solos calculus are given by

P ::= 0
∣∣ x y

∣∣ u x̃.φ
∣∣ u x̃.φ

∣∣ (x)P
∣∣ P |P

E ::=
∣∣ (x)E

∣∣ P |E ∣∣ E|P

Structural congruence on terms ≡ is the smallest congruence satisfying the
following:

P |0 ≡ 0 P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R
x x ≡ 0 x y ≡ y x x y | y z ≡ x z | y z (x)(x y) ≡ 0
(x)(y)P ≡ (y)(x)P (x)(P |Q) ≡ (x)P | Q if x
∈ fn(Q)
x y | P ≡ x y | P{y/x}

Reaction relation is the smallest relation → satisfying the following, and
which is closed with respect to ≡ and contexts:

u x̃.φ | u ỹ.ψ → x̃ ỹ | φ | ψ

Observation P ↓ u is the smallest relation satisfying

u x̃.φ ↓ u P | Q ↓ u if P ↓ u
u x̃.φ ↓ u (x)P ↓ u if P ↓ u and u
= x

Q ↓ u if Q ≡ P ↓ u

The explicit fusion calculus is obtained by allowing arbitrary continuations and
replication, with !P ≡ P |!P .

P ::= . . .
∣∣ u x̃.P

∣∣ u x̃.P
∣∣ !P

E ::= . . .
∣∣ u x̃.E

∣∣ u x̃.E
∣∣ !E

Bisimulation is as usual. A relation S is a strong barbed bisimulation if
whenever P S Q then

• P ↓ u if and only if Q ↓ u
• if P → P ′ then Q → Q′ such that P ′ S Q′

• if Q → Q′ then P → P ′ such that P ′ S Q′

Barbed congruence P ∼ Q holds whenever, for all contexts E, E[P] ·∼ E[Q],
where ·∼ is the largest bisimulation.

Table 1: The explicit solos calculus

9

2. Fusion laws
x x ≡ 0 x y ≡ y x

The fusion laws are a syntactic convenience, allowing us to write a fusion x y
without explicitly stating that x and y are distinct names in a particular order.
To the same end, we also let x - stand for 0. There is no need to incorporate
the calculus congruence P ≡ Q into the machine congruence: the heating of a
term is already implemented by the machine transitions.
It is easy to show that all rules in the structural congruence preserve well-

formedness.

Definition 4 (Transitions) The reduction transition → and the heating tran-
sition ⇀ are the smallest relations satisfying the rules below, and closed with
respect to structural congruence. Each rule addresses generically both free and
local channel-managers.

u[outx̃.φ; inỹ.ψ;B] → u[x̃ ỹ;φ;ψ;B] (react)

u[v:mx̃.φ;B1], v[B2] ⇀ u[v:B1], v[mx̃.φ;B2] (migrate)
u[x y;B1], x[p:B2] ⇀ u[B1], x[y: y p;B2], if x < y (dep.fu)
u[vx̃.φ;B1], v[B2] ⇀ u[B1], v[inx̃.φ;B2] (dep.in)
u[v x̃.φ;B1], v[B2] ⇀ u[B1], v[outx̃.φ;B2] (dep.out)

u[ux̃.φ;B] ⇀ u[inx̃.φ;B] (dep.in′)
u[v x̃.φ;B] ⇀ u[outx̃.φ;B] (dep.out′)

u[(x)P | B] ⇀ u[P{x′
/x};B], (|x′|)[-:], x′ fresh (dep.new)

u[P |Q;B] ⇀ u[P ;Q;B] (dep.par)
u[0;B] ⇀ u[B] (dep.nil)

For every transition rule above, we close it under contexts:

M → M ′, chanM ′ ∩ chanN = ∅
M,N → M ′, N

M ⇀ M ′, chanM ′ ∩ chanN = ∅
M,N ⇀ M ′, N

It is easy to show that all transition rules preserve well-formedness. In respect
of this, note that (dep.new) generates a fresh name so as to preserve single-
definition, and the context closure rule forces this name to be globally fresh.

Bisimulation

We now define barbed bisimulation on machines.

Definition 5 (Observation) The internal observation M ↓ u is the smallest
relation closed with respect to structural congruence and satisfying

u[mx̃.φ;B] ↓ u
u[v:B],M ↓ u if M ↓ v
M1,M2 ↓ u if M1 ↓ u or M2 ↓ u

The external observation M ⇓ u holds if M ⇀∗ M ′ such that M ′ ↓ u and
u
∈ lchanM ′.

10

This is standard apart from the middle rule. To understand it, consider the
example u[v:], v[outx]. This corresponds to the calculus term u v | v x, which
has an observation on u because of the explicit fusion. So too we wish the
machine to have an observation on u. As for the reverse case, of u[v: outx], v[]
being observable on v, this is observable after a single heating transition.
The symbol ⇓ is generally used for weak observation, which is blind to in-

ternal reactions. Note however that our external observation ⇓ is strong with
respect to reactions, but weak with respect to heating. Similarly, we write ⇒
for ⇀∗→⇀∗.

Definition 6 (Bisimulation) A (strong) barbed bisimulation S between ma-
chines is a relation such that if M S N then

1. M ⇓ u if and only if N ⇓ u
2. M ⇒ M ′ implies there exists N ′ such that N ⇒ N ′ and M ′ S N ′

3. N ⇒ N ′ implies there exists M ′ such that M ⇒ M ′ and M ′ S N ′

Let ·∼, called barbed bisimilarity, be the largest barbed bisimulation.

Theorem 7 (Correctness)

1. For programs P and Q in the explicit solos calculus, P ·∼ Q if and only if
x[P] ·∼ x[Q].

2. There is a translation (·)∗ from the pi calculus into the explicit solos calcu-
lus such that, for programs P and Q in the pi calculus without replication,
P

·∼ Q if and only if x[P ∗] ·∼ x[Q∗].

Sketch Proof. Consider the translation calcM from machines to terms in the
explicit solos calculus, defined by calcM = (lchanM)[[M]] where

[[0]] = 0 [[0]]u = 0
[[u[-:B]]] = [[B]]u [[outx̃.φ]]u = u x̃.φ

[[u[v:B]]] = u v | [[B]]u [[inx̃.φ]]u = u x̃.φ

[[M1,M2]] = [[M1]] | [[M2]] [[P]]u = P

[[B1;B2]]u = [[B1]]u | [[B2]]u

It is straightforward to show that machine heating transitions imply structural
congruence in the calculus, and that machine barbs and reactions imply barbs
and reactions in the calculus.
The proof of the reverse direction is more difficult. Given calcM ↓ u, then

there is also a machine M ′ in which all the deployable terms in M have been
deployed such that calcM ′ ↓ u. We now consider the fusion pointers inM ′. Let
us write u� v if there is a sequence of fusion pointers from u to v. Note that all
transitions preserve the following properties of this relation: it is anti-reflexive,
anti-symmetric and transitive, it respects the order on names (x � y implies
x < y) and it is confluent (x� y and x� z implies y � z or z � y or y = z).
We are therefore justified in talking about a tree of fusion pointers. With this
tree it is easy to prove that if calcM ′ ↓ u, then also M ′ ↓ u. It is a similar
matter to show that the machine preserves calculus reactions.

11

Therefore, the translation calc preserves observation and reaction, and so
calcM ·∼ calcN if and only if M ·∼ N . The first part of the theorem is just a
special case of this, since calcx[P] ≡ P .
As for the pi calculus result, we refer to Corollary 66 and Proposition 101

of [18]. Together these provide a translation from the pi calculus into the explicit
solos calculus which preserves strong barbed bisimulation. �

We now consider behavioural congruence. In this paper, our goal is that the
fusion machine should provide an operational semantics for calculus programs:
i.e. we wish to study how programs behave when placed in a machine. To this
end, we define contexts Em for the machine where holes are filled with terms.

Definition 8 (Contexts) Machine contexts Em are given by

Em ::= x[p:Eb]
∣∣ (|x|)[p:Eb]

∣∣ Em,M
∣∣ M,Em

Eb ::=
∣∣ B;Eb

∣∣ Eb;B

When we write Em[P], we implicitly assume it to be well-formed. The machine
equivalence is defined as follows:

Definition 9 (Equivalence) Two terms are judged equivalent by the machine,
P ∼m Q, if and only if for every context Em, Em[P]

·∼ Em[Q].

Theorem 10 (Full abstraction) For terms P and Q in the explicit solos cal-
culus, P ∼ Q if and only if P ∼m Q.

Sketch Proof. In the forward direction, we extend the translation calc to con-
texts in the obvious way. Then, given a machine context Em, we can construct
a calculus context E = calcEm such that, for every P , calc(Em[P]) ≡ E[P].
The reverse direction is not so straightforward. Consider for example the

context E = ux | (x) . This has no direct equivalent in the machine: it is
impossible in the machine for x to be a local channel-manager whose scope
includes a hole, and also at the same time a free name. Instead, given a context
E which can discriminate between P and Q, we will construct another context
E′ = ux′ | (x) which also discriminates them, and which has no clash of names;
therefore it can be represented in the machine.
Technically, we will define a translation [[·]]ỹ from calculus contexts E to

triples (σ, z̃, R). This translation pushes out the bindings that surround the
hole in E. In order to accomplish this structurally, we keep all the binders in z̃
(suitably renamed to avoid clashes), and collect the necessary renamings of free
names in σ. The intention is that for any terms P and Q, then E[P] ·∼ E[Q] if
and only if (z̃)(R|P) ·∼ (z̃)(R|Q), where [[E]]ỹ = (σ, z̃, R) and ỹ contains all the
names occurring in E, P , and Q. The translation is defined as follows:

[[]]ỹ = (∅, ∅,0)
[[E|S]]ỹ = (σ, z̃, Sσ|R) where [[E]]ỹ = (σ, z̃, R)

[[(x)E]]ỹ =

{
(σ[x �→ x′], z̃x, R) if x
∈ z̃

(σ[x �→ x′], (z̃, σ(x)), R) if x ∈ z̃

}
where [[E]]ỹ = (σ, z̃, R)
and x′
∈ {ỹ, z̃, ranσ}

We can prove that the contexts E and (z̃)(R|) are equivalent up to renaming by
σ. Since σ is by definition injective, the contexts have the same discriminating
power. Hence, so does the machine context Em = (|z1|)[], . . . (|zn|)[], x[R;]. �

12

Unsurprisingly, full abstraction does not also hold for the pi calculus: it is
known that pi calculus congruence is not closed with respect to substitution,
whereas explicit fusion contexts always allow substitution.

5 Co-location

We now refine the abstract machine with (co-)locations, to allow practical rea-
soning about efficiency. When two machines are running at the same physical
location, and share an address space, we draw their diagrams as physically ad-
jacent:

u

F

A

D

v

F ′

A′

D′

Some optimisations are possible in this case. First, it is possible to migrate or
deploy an arbitrarily large number of terms to an adjacent machine, in constant
time and without requiring any inter-location messages. Second, we can use
just a single thread to handle both channels. In the degenerate case, where all a
machine’s channels are at the same location and handled by just a single thread,
the machine is essentially the same as Cardelli’s single-processor machine.
Co-location might be programmed with a located restriction command in the

calculus, written (x@y)P , to indicate that the new channel x should be created
physically adjacent to y. The deployment transition is

u

F

A

(x@y)P ;D

y

F ′

A′

D′
⇀

u

F

A

P{x′
/x};D

(|x′|)
−
−
−

y

F ′

A′

D′
(dep.new.at)

(To implement this efficiently, without sending any inter-location messages, we
assume that u is able to generate the fresh channel name x′ locally—even though
that x′ will reside outwith u. We could implement this by letting each channel
name incorporate a Globally Unique Identifier.)
Note that bound input, as found in the distributed version of the channel

machine, allows new names to be created at a location chosen at runtime. For
instance, in(x).(y@x)P will create the name y at the location of whichever name
substitutes x. By contrast, a fusion machine without bound input has no way
to chose locations at runtime. Therefore we should extend the machine with
bound input.

Co-location used in encoding continuations

As discussed in Section 3, we ultimately imagine a machine which uses both
continuations and fusions, and which uses them to implement the full pi calculus
and explicit fusion calculus with nested continuations. To avoid the cost of
repeatedly transporting continuations, an optimising compiler can encode a term
with nested continuations into one without. This section describes our encoding
and discusses its efficiency.

13

Two different encodings have been given previously [12, 9]. The distinguish-
ing features of ours are that it is a strong congruence rather than just preserving
weak congruence, it is uniform, and it uses co-location for increased efficiency.
As an example, we encode the term u.(v | v) as

(v′@v, v′′@v)(u.(v v′ v′′) | v′ | v′′).

Note that the commands v′ and v′′ will necessarily remain idle until after u has
reacted. Then, since v′ and v′′ are co-located with v, it will take no inter-location
messages to migrate them to v.
Technically, we will relate terms P to triples of the form (x̃, φ, P ′). This

triple should be understood as the term (x̃)(φ|P ′) in which P ′ contains no
nested actions or unguarded explicit fusions, and the located restrictions x̃ are
alpha-renamable.

Definition 11 The function flat · from terms in the explicit fusion calculus to
terms in the explicit solos calculus is as follows. It makes use of an auxiliary
translation [[·]] from terms in the explicit fusion calculus to triples (x̃, φ, P ′),
where x̃ ranges over located restrictions and normal restrictions.

[[0]] = (∅, ∅, 0)
[[x y]] = (∅, x y, 0)
[[(z)P]] = (z x̃, φ, P ′) where [[P]]=(x̃, φ, P ′) and z
∈ x̃

[[u z̃.P]] =
(
u′@u, u u′, (x̃)(u′z̃.φ | P ′)

)
where [[P]]=(x̃, φ, P ′), x̃ ∩ z̃=∅, u′ fresh

[[u z̃.P]] =
(
u′@u, u u′, (x̃)(u′z̃.φ | P ′)

)
where [[P]]=(x̃, φ, P ′), x̃ ∩ z̃=∅, u′ fresh

[[P | Q]] = (x̃ ỹ, φ|ψ, P ′|Q′) where [[P]]=(x̃, φ, P ′), [[Q]]=(ỹ, ψ,Q′)
and x̃ ∩ ({ỹ} ∪ fn(ψ|Q′)) = ∅
and ỹ ∩ ({x̃} ∪ fn(φ|P ′)) = ∅

flatP = (x̃)(φ | P ′) where [[P]]=(x̃, φ, P ′)

Theorem 12 For any term P in the explicit fusion calculus, P ∼ flatP .

This encoding is only defined on terms without replication. However, the en-
coding is a congruence even within replicated contexts. For instance, !u x̃.P ∼
!u x̃.(flatP). Therefore, an optimising compiler can locally encode any part of a
program, without needing to encode it all. The proof is substantial; it may be
found in [18].

Theorem 13 If x[P] takes n inter-location messages to evolve to M ′ in the
fusion machine with continuations, then x[flatP] need take no more than 2n
inter-location messages in the machine without continuations to evolve to N ′,
such that M ′ ·∼ N ′.

Sketch Proof. First, annotate the machine transitions from Definition 4 with
0 or 1 to indicate their cost. For instance, migration u[v: outx], v[] ⇀0 u[v:],
v[outx] takes no messages if u and v are co-located, and one message ⇀1 oth-
erwise. Then, define an costed simulation relation where P S Q implies that
transitions P →i P ′ or P ⇀i P ′ can be matched by transitions in Q of cost no
greater than 2i. Construct S= {(M,N)} where for each term P contained in a
channel-manager in M , then N contains flatP in any channel-manager. Then
S is a costed simulation. �

14

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal

of Functional Programming, 1(4):375–416, 1991.

[2] L. Cardelli. An implementation model of rendezvous communication. In Seminar
on Concurrency, LNCS 197:449–457, 1984.

[3] S. Conchon and F. L. Fessant. Jocaml: Mobile agents for objective-caml. In
ASA/MA’99, pages 22–29. IEEE, Computer Society Press.

[4] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In POPL’96, pages 372–385. ACM Press.

[5] C. Fournet, J.-J. Lévy, and A. Schmitt. An asynchronous, distributed implemen-
tation of mobile ambients. In IFIP TCS 2000, LNCS 1872:348–364.

[6] P. Gardner and L. Wischik. Explicit fusions. In MFCS 2000, LNCS 1893:373–382.

[7] A. Giacalone, P. Mishra, and S. Prasad. FACILE: A symmetric integration of
concurrent and functional programming. International Journal of Parallel Pro-
gramming, 18(2):121–160, 1989.

[8] C. Laneve, J. Parrow, and B. Victor. Solo diagrams. In TACS 2001,
LNCS 2215:127–144.

[9] C. Laneve and B. Victor. Solos in concert. In ICALP’99, LNCS 1644:513–523.

[10] C. Palamidessi. Comparing the expressive power of the synchronous and the
asynchronous pi-calculus. In POPL’97, pages 256–265. ACM Press.

[11] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In LICS’98, pages 176–185. IEEE, Computer Society Press.

[12] J. Parrow. Trios in concert. In Proof, Language and Interaction: Essays in
Honour of Robin Milner, pages 621–637. MIT Press, 2000.

[13] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In Proof, Language and Interaction: Essays in Honour of Robin Milner,
pages 455–494. MIT Press, 2000.

[14] P. Sewell. On implementations and semantics of a concurrent programming lan-
guage. In CONCUR’97, LNCS 1243:391–405.

[15] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975.

[16] D. N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD
thesis, University of Edinburgh, 1996.

[17] B. Victor and J. Parrow. Concurrent constraints in the fusion calculus. In
ICALP’98, LNCS 1443:455–469.

[18] L. Wischik. Explicit Fusions: Theory and Implementation. PhD thesis, University
of Cambridge, 2001. Submitted.

[19] L. Wischik. Fusion machine prototype. http:// www.wischik.com/ lu/ research/
fusion-machine.

[20] P. T. Wojciechowski. Nomadic Pict: Language and Infrastructure Design for Mo-
bile Computation. PhD thesis, Computer Laboratory, University of Cambridge,
2000.

15

Appendix. The distributed channel machine

Definition 14 (Distributed channel machine) Machines C are defined by

C ::= 0
∣∣ x[B] ∣∣ (|x|)[B]

∣∣ C,C
B ::= outx̃.P

∣∣ !outx̃.P
∣∣ in(x̃).P

∣∣ !in(x̃).P ∣∣ P ∣∣ B;B
P ::= 0

∣∣ u x̃.P ∣∣ !u x̃.P ∣∣ u(x̃).P ∣∣ !u(x̃).P ∣∣ (x)P ∣∣ P |P

Contexts Ec are defined by

Ec ::= x[Eb]
∣∣ (|x|)[Eb]

∣∣ Ec, C
∣∣ C,Ec

Eb ::= outx̃.Ep

∣∣ !outx̃.Ep

∣∣ in(x̃).Ep

∣∣ !in(x̃).Ep

∣∣ Ep

∣∣ B;Eb

∣∣ Eb;B

Ep ::=
∣∣ u x̃.Ep

∣∣ !u x̃.Ep

∣∣ u(x̃).Ep

∣∣ !u(x̃).Ep

∣∣ (x)Ep

∣∣ Ep|P
∣∣ P |Ep

The structural congruence ≡ between machines and atoms is the least congru-
ence and equivalence satisfying the Abelian monoid laws with 0 as unit:

M,0 ≡ M M1,M2 ≡ M2,M1 M1, (M2,M3) ≡ (M1,M2),M3

B;0 ≡ B B1;B2 ≡ B2;B1 B1; (B2;B3) ≡ (B1;B2);B3

The channels and local channels of a machine are defined by:

chan0 = ∅ lchan0 = ∅
chanx[B] = {x} lchanx[B] = ∅

chan(|x|)[B] = {x} lchan(|x|)[B] = {x}
chanC1, C2 = chanC1 ∪ chanC2 lchanC1, C2 = lchanC1 ∪ lchanC2

The pointers of a machine are defined by:

ptr 0 = ∅ ptr outx̃.P = ptr !outx̃.P = {x̃} ∪ fnP
ptr x[B] = ptrB ptr in(x̃).P = ptr !in(x̃).P = fnP\{x̃}

ptr(|x|)[B] = ptrB ptrP = fnP
ptrC1, C2 = ptrC1 ∪ ptrC2 ptrB1;B2 = ptrB1 ∪ ptrB2

The transition relation → and the heating relation ⇀ are the smallest relations
satisfying the rules below, and closed with respect to structural congruence.

u[outx̃.P ; in(ỹ).Q;B] → u[P ;Q{x̃/̃y};B] (react)

u[!outx̃.P ; in(ỹ).Q;B] → u[!outx̃.P ;P ;Q{x̃/̃y};B] (r.out)
u[outx̃.P ; !in(ỹ).Q;B] → u[!in(ỹ).Q;P ;Q{x̃/̃y};B] (r.in)
u[!outx̃.P ; !in(ỹ).Q;B] → u[!outx̃.P ; !in(ỹ).Q;P ;Q{x̃/̃y};B] (r.both)

u[v(x̃).P ;B1], v[B2] ⇀ u[B1], v[in(x̃).P ;B2] (dep.in)
u[v x̃.P ;B1], v[B2] ⇀ u[B1], v[outx̃.P ;B2] (dep.out)

u[!v(x̃).P ;B1], v[B2] ⇀ u[B1], v[!in(x̃).P ;B2] (dep.rin)
u[!v x̃.P ;B1], v[B2] ⇀ u[B1], v[!outx̃.P ;B2] (dep.rout)

u[u(x̃).P ;B] ⇀ u[in(x̃).P ;B] (dep.in′)

16

u[u x̃.P ;B] ⇀ u[outx̃.P ;B] (dep.out′)
u[!u(x̃).P ;B] ⇀ u[!in(x̃).P ;B] (dep.rin′)
u[!u x̃.P ;B] ⇀ u[!outx̃.P ;B] (dep.rout′)

u[(x)P ;B] ⇀ u[P{x′
/x};B], (|x′|)[], x′ fresh (dep.new)

u[P |Q;B] ⇀ u[P ;Q;B] (dep.par)
u[0;B] ⇀ u[B] (dep.nil)

For every transition rule above, we close it under contexts:

M → M ′, chanM ′ ∩ chanN = ∅
M,N → M ′, N

M ⇀ M ′, chanM ′ ∩ chanN = ∅
M,N ⇀ M ′, N

The external observation M ↓ u holds when u
∈ lchanM and

u[B1 | outx̃.φ | B2] ↓ u
u[B1 | in(x̃).φ | B2] ↓ u
u[B1 | !outx̃.φ | B2] ↓ u
u[B1 | !in(x̃).φ | B2] ↓ u

M1,M2 ↓ u if M1 ↓ u or M2 ↓ u
We write ⇒ for ⇀∗→⇀∗, and M ⇓ u for M ⇀∗↓ u.
A machineM = x1[B1], · · · , xn[Bn] is singly-defined when i
= j implies xi
= xj ,
it is complete when ptrM ⊆ chanM , and it is well-formed when it is both singly-
defined and complete. In the following, we consider only well-formed machines.
Barbed bisimulation and congruence are defined in the usual way:

Definition 15 A (strong) barbed bisimulation S between machines is a relation
such that if M S N then

1. M ⇓ u if and only if N ⇓ u
2. M ⇒ M ′ implies there exists N ′ such that N ⇒ N ′ and M ′ S N ′

3. N ⇒ N ′ implies there exists M ′ such that M ⇒ M ′ and M ′ S N ′

Let ·∼, called barbed bisimilarity, be the largest barbed bisimulation. Machine
congruence P ∼c Q is defined by ∀Ec : Ec[P]

·∼ Ec[Q].

Theorem 16

• P
·∼ Q if and only if x[P] ·∼ x[Q].

• P ∼ Q if and only if P ∼c Q, where ∼ is strong barbed congruence.

Sketch Proof. For the first part, we define a translation calcC from machines
to pi calculus terms as calcC = (lchanC)[[C]], where [[·]] is as follows.

[[0]] = 0 [[0]]u = 0
[[u[B]]] = [[B]]u [[outx̃.P]]u = u x̃.P

[[(|u|)[B]]] = [[B]]u [[in(x̃).P]]u = u(x̃).P
[[C1, C2]] = [[C1]] | [[C2]] [[!outx̃.P]]u = !u x̃.P

[[!in(x̃).P]]u = !u(x̃).P
[[B1;B2]]u = [[B1]]u | [[B2]]u

[[P]]u = P

17

The following three properties follow directly:

1. C ⇀ C ′ implies calcC ≡ calcC ′

2. C → C ′ implies calcC ↘ calcC ′

3. C ↓ u implies calcC ↓ u
The following two properties are easy to prove using full deployment : given a
machine C, construct a machine C ′ by performing heating transitions until no
more are possible. By the first property above, if calcC has an observation or
reaction, then so does calcC ′.

4. calcC ↓ u implies C ⇀∗↓ u
5. calcC ↘ P ′ implies C ⇒ C ′ such that calcC ′ ≡ P ′

All the above properties together imply that C1
·∼ C2 if and only if calcC1

·∼
calcC2. The first part of the theorem is just a special case of this, since
calcx[P] ≡ P .
For the congruence result, we will translate contexts as follows. Let calcEc =

(lchanEc)[[Ec]], where [[·]] is extended with the following.

[[u[Eb]]] = [[Eb]]u [[outx̃.Ep]]u = u x̃.Ep

[[(|u|)[Eb]]] = [[Eb]]u [[in(x̃).Ep]]u = u(x̃).Ep

[[Ec, C]] = [[Ec]] | [[C]] [[!outx̃.Ep]]u = !u x̃.Ep

[[C,Ec]] = [[C]] | [[Ec]] [[!in(x̃).Ep]]u = !u(x̃).Ep

[[(x)Ep]]u = (x)Ep

[[B;Ep]]u = [[B]]u | Ep

[[Ep;B]]u = Ep | [[B]]u
Then for all Ec there exists Ep = calcEc such that for all P , calc(Ec[P]) ≡
Ep[P]. And in the reverse direction, for all Ep there exists Ec = x[Ep] such that
the same. �

18

