
1

Process Calculi

for web services

Lucian Wischik, University of Bologna
http://ww.wischik.com/lu/research/choreography.html

W3C choreography group, March 2003, CA

These slides are available on this web site. And the web site also has 
specific links for the work that I mention.

My name’s Lucian Wischik. I’m a researcher in process calculi, specifically 
the pi calculus.

I’m talking to you here now because maybe web services can benefit from 
what’s been done with process calculi. I hope today to give a quick primer 
on them, something that’s easier to digest than the textbooks and research 
papers on the subject.

2

process calculi

“process calculus” means two things:

• a simple language for writing/describing/specifying 
interactive message-passing programs.
– more concise than automata

– better than automata for ‘reconfigurable’ systems

– it’s trivial, easy, but in this talk I’ll use diagrams instead.

• a notion called `bisimulation’ to say when two 
programs have the same interactive behaviour.
– difficult! subtle! this is the topic of the talk

What does it mean, “process calculus”? Two things. First, a language for 
writing interactive programs - ones that work by message-passing. Really, 
you can work with automata diagrams like in Biztalk, or write in a process 
language, and I’ll use diagrams in this talk. The language is so simple that 
you won’t benefit much from a primer by me. Just read the first couple of 
pages of Milner’s book.

The second thing in a process calculus is a notion called “bisimulation”. It’s 
for saying whether two programs have the same interactive behaviour. The 
thing is, in the olden days, when we wrote functions, it was easy to say 
whether two functions are equivalent – if two functions give identical outputs 
for identical inputs, then they’re equivalent. For interactive programs it’s 
harder. That’s what I want to talk about.



3

what have process calculi ever done for us?

Bisimulation:

• we need to specify the behaviour of interacting services

• most researchers settled upon `bisimulation’ for this job

• but it can be a bit subtle.

• Plan: to explain the idea behind it,
outline state of the art, avoid the maths.

I reckon that this is relevant to web services, because you’ll need to specify 
the behaviour of a web service, and to be able to judge whether an 
implementation is equivalent to the specification. And that’s what 
bisimulation is all about, and there’s been lots of work in it, and maybe web 
services can benefit from the work.

This “lots of work” culminated in a book last year by Davide Sangiorgi. which 
is an inch and a half thick of serious heavy-duty maths. I hope to explain the 
ideas behind it, without any of the maths. When Davide explained his book 
to his wife, she just said “that’s all trivial”, so maybe you’ll feel the same!

4

bev services

• These two bev-services accept the same message-sequences
{50c,‘T’,tea} and {50c,50c,‘C’,coffee}.
But they are not equivalent services! message-sequences are inadequate.

50¢

`Tea’ button

emit: tea`Coffee’
button

50¢

emit: 
coffee

50¢

`Tea’ button

emit: tea
`Coffee’

button

50¢

emit: 
coffee

50¢

• Bisimulation is needed: we must pay attention to the states, to the 
possibilities still available at each state.

[specification] [implementation]

I’m still learning about WEB services, so instead of them, I thought I’d talk 
about something I’m more familiar with: BEV services.

This is a classic example from the 80s. (from a calculus called CCS). From 
Milner. We see two bev services here. The one on the left is the
specification, on the right is the implementation. We wish to establish 
whether they are the same.

There’s something wrong with the implementation. Can anyone see what it 
is? [answer: the machine itself decides whether you get tea or coffee, not 
you.] We hope for an automated test that will tell us: this implementation 
fails.

What kind of automated test? Well, the diagrams are finite-state automata, 
and the classic test of automata-equivalence is whether they accept the 
same sequence of messages. In this case they do: {50c,T,tea} or 
{50c,50c,C,coffee}. So, message-sequence-testing isn’t good enough.

Instead...



5

bev services

• Bisimulation is needed: we must pay attention to the states, to the 
possibilities still available at each state.

50¢

`Tea’ button

emit: tea`Coffee’
button

50¢

emit: 
coffee

50¢

`Tea’ button

emit: tea
`Coffee’

button

50¢

emit: 
coffee

50¢

This state in the specification has possible both ‘50¢’ and ‘Tea’
there is no matching state in the implementation on the right

therefore the implementation fails bisimulation

[specification] [implementation]

Instead we need to pay attention to the states, to the possibilities still 
available at each state. This is the essence of bisimulation.

Let’s see why this example fails the bisimulation test.

In the specification on the left, there is this state which can accept either a 
press on the ‘tea’ button, or a further 50cents. But there is no matching state 
on the right. Therefore, it fails.

6

bev services

• Bisimulation is needed: we must pay attention to the states, to the 
possibilities still available at each state.

50¢

`Tea’ button

emit: tea`Coffee’
button

50¢

emit: 
coffee

50¢

`Tea’ button

emit: tea`Coffee’
button

50¢

emit

(lengthy private 
dialog with Nescafe, 
Illycafe, ...)

All the extra internal states in this implementation
offer no more and no fewer possibilities than the specification

therefore the program passes!

[specification] [implementation]

Here’s an example which succeeds the bisimulation test.

This implementation on the right doesn’t emit the coffee straight away. 
Instead, it engages in a lengthy private dialog with various Coffee-bean 
services. Only at the end does it emit the coffee.

Well, all of these internal states of the private dialog, they all have the same 
external possibilities open to them as the specification. Therefore this 
succeeds.



7

reconfigurability

• Reconfigurability makes the topic harder:
if messages can include the names of other channels, then...

50¢

press `Tea’ button, 
asking for tea to be 
delivered to 
http://redwood.ca

emit: tea is sent 
to redwood.

[specification]
“...the state that receives the 
message tea_please(redwood)
must be followed by a state that sends 
the message tea to redwood.”

As well as observing messages,
we can observe a message’s arguments,
and we must parameterise the rest of the 
specification upon them.
(obvious, really!)“output capability”

MS BizTalk

BUT. The examples on the previous slide were easy. They’re for a simple 
service without reconfiguration.

What exactly is “reconfiguration”? It means that messages can include 
channel-names. So I could tell you an address, and you send back your 
answer to that address. Here, I ask for tea to be delivered to Redwood.

If you’ve used Biztalk, this reconfiguration is called “dynamic ports”. 
(actually, if you’ve used dynamic ports in Biztalk, you’ll understand what I 
said earlier: automata diagrams aren’t good at expressing reconfigurability, 
a proper language is better).

Anyway, obviously, the specification needs to be parameterised on the 
contents of messages.

8

reconfigurability

50¢

press `Tea’ button, 
asking for tea to be 
delivered to 
http://redwood.ca

emit: tea is sent 
to redwood.

• Reconfigurability makes the topic harder:
if messages can include the names of other channels, then...

“new-channel creation”
Join Calculus,

Localised Pi Calculus.

Please create a 
MyBevServerTM

for me

emit: OK, your personal 
bev-server is at 
http://297.mybev.com

[creates a new channel]

50¢ ...

“output capability”
MS BizTalk

listens at 297.mybev.com

Please add 
MyBevServerTM

functionality to 
http://wischik.com

emit: OK!

50¢ ...

“input capability”
Pi calculus. MS Highwire.
Implement it with fusions.

listens at wischik.com

There are other forms of reconfigurability as well.

Like in the Join calculus and Localised Pi Calculus you can create a new 
channel at runtime, which then receives messages. This example is a kind 
of meta-bev-server, which can create new bev servers.

What sort of thing is this good for describing? It’s like when a server gets a 
request at the start of the dialog, then it creates some separate channels to 
handle the rest of this particular dialog instance.

(You can do this in other ways like with cookies, or whatever, like people do 
at the moment. But there’s a good reason to put the capability into the 
language instead. It means that it becomes something you can specify and 
verify.)

Another kind of reconfigurability is found in the full pi calculus. This is my 
research area. It’s called “input capability”.

It means that I can tell the meta-bev-server to add functionality to a pre-
existing channel, like wischik.com here. (the difference, in the previous 
example, it could only add functionality to its own newly-defined channel).

Well, we don’t know if this full pi-calculus capability will be practically useful 
or not. It’s implemented with something called fusions, and is present in MS 
Highwire. Once it’s been available, and once people have written real 
programs with it, we’ll see whether it’s useful.



9

conclusions

• Reconfigurability makes the topic harder:
if a message includes the name of other channels, then...

– You have to take this into account for bisimulation
i.e. parameterise the specification on the data received in messages

– But now, it’s easy to end up with an unsafe bisimulation
i.e. clients can spot differences, even though the implementation ‘passed’

– The ideal: “a program passes the specification if no client can ever 
distinguish the two.” (called congruence). But not computable.

– So researchers find safe approximations for their bisimulations,
stricter than necessary, but easy to model-check.

– We dream of behavioural type systems – where the type-checker checks 
that interaction obeys a given protocol, as well as data obeying its type.

The upshot is that, depending on what capabilities we think web services 
have, the specification language has to reflect that.

And this makes it more fiddly to get the right form of bisimulation for the 
language.

I also think that transactions will also make it more fiddly, but they’ve hardly 
been addressed yet by process calculus researchers.

This is where you begin to get fed up with bisimulation, to think it’s too 
complicated.

So researchers like to cut to the chase and come up with a simple, clear 
definition. This philosophical ideal is this: you say: two systems, the 
specification and the implementation, the two systems have the same 
interactive behaviour if no client can ever distinguish the two.

But this is just an ideal. It’s not practical, you can’t test it, you can’t prove it.

So researchers work to find safe, conservative approximations that can be 
tested.

This is a bit heavy-going. Really, in a year or two’s time, we hope to see it 
boil down into something quite simple: a compiler where it’s type system 
checks behaviour – not just data-types matching, but it also checks that for 
a procedure which uses some channels, which sends or receives data over 
the channels – it checks that the procedure is obeying a given protocol with 
these messages, with these channels. That’d be a lovely way to write 
programs that use web-services.


