
In Cabernet Radicals Workshop, October 2002
http://www.wischik.com/lu/research/

New directions in implementing the pi calculus

Lucian Wischik, University of Bologna

30th August 2002

Do you know what the pi calculus is? It is a language invented ten years ago for
describing concurrent and distributed systems. It has come to dominate theoretical
research into concurrency and distribution, and now its time has come to be used in
practice.

The author, along with Laneve and Gardner, has recently developed a distributed
virtual machine [10, 12, 2] for the pi calculus. This is new territory – ours is actually
the calculus’ first true distributed implementation. We depart in several ways from
mainstream ideas in the research community. Indeed, our implementation has more
in common with the commercial product Microsoft Biztalk [5] (a recent tool used to
integrate business systems and which itself is based partly on the pi calculus). In our
future plans we have been partly inspired by the practical concerns faced by Biztalk; in
turn, the designers of Biztalk are taking some of our ideas for their next version.

The goal of this paper is to present the practical lessons learned from our ongoing
implementation experience and also from Biztalk. We hope to challenge some existing
ideas, and to draw attention to fresh areas needing investigation. The basic motivation
is that the pi calculus seems an easier way to write a wide range of concurrent and
distributed programs.

1 The pi calculus and its market

This paper is about implementing the pi calculus language. We therefore start by
describing it. To call it a language is in fact a little grandiose – it is really just a
minimal core of commands and declarations, which will presumably be embedded in
some richer language. In our current implementation we provide the commands as C
functions, and we are working on the richer language; in Biztalk the commands are part
of its internal XLANG. We will describe the language by example; for a full reference
see Communicating and Mobile Systems by Milner [6].

The pi calculus describes programs which run in parallel and which interact over
channels. Consider the example program

ux.P | u(y).Q.

It contains one program ux.P ready to send the data x over the channel u, and afterwards
to continue doing P . In parallel, a second program u(y).Q is ready to receive the data
y over the channel, and afterwards continue doing Q. The name y is a formal argument
and is local to Q. The two programs interact as follows:

ux.P | u(y).Q → P | Q{x/y}.

1

Note how convenient it is to write parallel threads and synchronisation – easier than
with fork, shared data and condition variables, and more flexible than remote procedure
calls.

(The calculus’ non-ASCII notation betrays its mathematical roots. Note also that
mathematicians like to use the same language for states as well as programs, and hence
they write substitution on terms Q{x/y}. In practice we actually compile terms into
byte-code and use a local stack for formal arguments.)

A term may also be replicated, indicated with !u(y).Q. This is a service that runs
at channel u and that spawns a fresh copy of Q every time it is invoked.

The restriction operator (x)P declares a name x to be local in P . Names are more
like heap variables than stack variables: they can be used outside the sub-program in
which they were first created, and can persist after the sub-program ends; whereas stack
variables can do neither.

A distinguishing feature of the pi calculus is input mobility. We explain with an
example. When the program u(x).x(y).Q has performed a rendezvous at u, then it
will wait to perform a second rendezvous at y – but the actual channel y will only be
determined at runtime. ‘Input mobility’ refers to this late binding of the input channel.
It is absent from Biztalk and other distributed calculi such as the join calculus [1], where
input channels are known at compile-time. We suspect it will prove to be a convenient
feature. For instance, a cell-phone receives the name of a new base station, and then
waits for messages from that new station.

Note: in the literature, when two programs have essentially the same “physical
structure”, they are treated as equivalent. But as implementors we have a different idea
of physical structure from mathematicians. In this paper we write → for execution steps
that are also deemed execution steps in the literature, and we write ⇀ for execution steps
that are commonly deemed equivalences.

Selling points. Our instinct is that the pi calculus is a natural way to think about
concurrency and to write concurrent programs; it certainly seems easier than the cur-
rent paradigm of forks, pipes and condition variables. Moreover, since most areas of
programming are concurrent – from high-level systems integration to low-level device
drivers – the pi calculus seems natural for all levels of programming. No current pro-
gramming paradigm spans such a wide range. This selling point was suggested to us
by Meredith, designer of Biztalk.

So far, we have evidence (from the success of Biztalk) that the pi calculus is indeed
natural and appropriate for high-level systems integration. We also have evidence (from
the collective groans of programmers all over the world) that current paradigms are not
working for concurrent middle-level programs such as word processors and Windows
Explorer. Hopefully, when our implementation is complete, we will gain experience at
this level of programming. A particular promise at this level is that behavioural type
systems seem possible – so the compiler can ensure that one’s code obeys a particular
protocol or is deadlock-free.

As for low-level device drivers, it is worth noting that a computer’s internal archi-
tecture is a kind of distributed system. In particular, there is high latency between the
various devices (CPU, memory, peripherals); and communication between them is by
message-passing. Moreover, the next generation of games consoles look set to use a
much higher number of “distributed” special-purpose chips with a much higher com-
parative latency between them than has yet been seen. It is widely believed that some
new programming paradigm will be needed to tame their complexity, but no one yet

2

knows which paradigm.
The vertical market for the pi calculus, from high level to low level, requires a

more diverse research programme than is currently the case. For instance, efficiency is
important for device-drivers but has not been widely addressed. And no single model
of failures spans from Biztalk to device drivers.

To illustrate, we briefly outline the Biztalk failure model. This failure model has
also not yet been addressed in the research community, but it should be. Biztalk is used
in a commercial setting where it is essential that no data (e.g. accounting records) are
ever lost. Reliable messaging protocols are used between parts of the system. Every
event is written to a reliable log on disk. If one part of the system should crash then
it can be rebooted, or the disk taken to a fresh machine. The challenge is to properly
and completely recover the system’s state after a reboot. (By contrast, existing work
on failures has been focused on middle-level applications that have to reroute around
failure, and on the low-level algorithms for reliable messaging.)

2 Channel-based implementation

Our distributed implementation of the pi calculus is channel-based. This means that the
only things to exist at runtime are channels, each at its own location (or co-located with
some other channels). In Biztalk the channels may belong to different companies. We
split a program up into fragments, each fragment ready to rendezvous at some channel,
and we deploy each fragment directly to this channel. Thus, synchronous rendezvous
is local. We illustrate our implementation with a small example, and then compare with
other work.

Consider the program uz | u(x).x(y).P | zu. After compilation the program is
split into three fragments, two deployed at u and the third at z:

u

outz
in(x).x(y).P

z

outu

In the diagrams the letters u and z at the top represent names of channels. Each channel
has two areas: the top area contains those fragments ready to rendezvous on the channel,
and the bottom area (currently empty) contains those fragments yet to be deployed. In
this example, a rendezvous at u is immediately possible:

→

u

z(y).P{z/x}

z

outu

As a result of the rendezvous, the continuation z(y).P{z/x} has been placed in bottom
area of u, indicating that it is now ready to be deployed. Deployment involves sending
it across the network to z:

⇀

u z

outu
in(y).P{z/x}

3

As mentioned, we suppose that channels may be co-located in the same address
space. We draw such co-located channels as physically adjacent:

u

z(y).P

z

If two channels are co-located, then a program fragment can be sent from one to the
other in constant time. We have used this property to prove efficiency results.

There are two noteworthy features in this channel-based implementation of syn-
chronous rendezvous. First: it is local, and handshake-free. Second: if the continuation
fragment x(y).P had happened to be large, then the double cost of sending it (first to
u in the initial deployment and then to z afterwards) would be prohibitive. The central
challenge is to avoid this cost. The two main solutions are as follows:

Biztalk/Join solution. Biztalk and the join calculus [1] disallow input mobility, and
disallow continuations after the send command uz. This means that continuations need
never be sent around the system (for the only continuations are those after an input
command; and their ultimate location is known at compile-time). The join calculus
additionally requires that every input command be replicated. This yields the property
that every send message is guaranteed to find a ready receiver.

Fragments solution. Our solution is to break programs down into smaller fragments,
and pre-deploy them to their ultimate location. For instance, given u(x).v(y).w(z).P ,
we might break it into u(x).v(y) deployed to u, and w(z).P deployed to w. The result
is that the large continuations are already placed at their correct locations; all that is
needed is a small message to trigger them. Technically, we have shown elsewhere [2]
how the triggers can be encoded in a version of the pi calculus with fusions [3, 7]. (A
fusion makes two channels become equivalent, in the sense that a message sent to either
will have the same effect). Our machine therefore implements this fusion version of the
calculus, rather than the pure pi calculus, and we leave pre-deployment as a compile-
time optimisation. (Note that in the case of input mobility u(x).x(y).P , the ultimate
location of x(y) cannot be known until after u(x), but even so we can still pre-deploy P .)
Other authors have proposed weaker forms of fragmentation [8, 4] but in a theoretical
setting, not for implementation.

Location-based calculi. The dominant paradigm in the research community is not
channel-based but rather location-based. This means: assume several locations, each
containing a collection of programs with their own channels. For instance, the state
m[ux|u(y).P] ‖ n[R|u(z).Q] would represent two locations m and n, with the channels
m.u and n.u distinct. This paradigm is used, for instance, in nomadic pict [9] and
distributed pi and in the ambient calculus. (The ambient calculus additionally allows
hierarchical locations).

However, these location-based calculi must now be augmented with new commands
for interaction between locations. These new commands then face the same problem, of
how to perform a distributed rendezvous. The answer has generally been to offer only
a more basic form of interaction, such as process migration. (Because their distributed
interaction is not pi-like, we do not call these “true distributed implementation of the pi
calculus.”)

Evaluation. It is widely thought that, by disallowing continuations after the send
command, one obtains a calculus that is somehow more implementable. As we have

4

seen, this is not the case.
We believe that the channel-based paradigm is better than the location-based for

reasons of simplicity. In particular, it uses just one type (located channels) rather than
two (locations and channels); it uses just one set of interaction commands (over channels)
rather than two sets (one for local and one for remote); and it allows the correctness
of a program to be studied independently from its location behaviour, using familiar
pi-calculus reasoning. Indeed, one reviewer dismissed the correctness proofs of our
virtual machine as “trivial and obvious”.

3 New names

In the pi calculus, the restriction operator (x)P indicates that the name x is local in P .
It does this through alpha-renaming and scope extrusion, as illustrated in the following
program. (In the program, note that the x in the left fragment is local and hence different
from the x in the right fragment.)

(x)(ux) | u(y).xy create a new channel x

≡ (x′)(ux′) | u(y).xy alpha-rename x to x′

≡ (x′)(ux′ | u(y).xy) extrude scope of x′

→ (x′)(xx′) rendezvous on channel u

But creating a new channel is an actual physical event: it sets up a machine some-
where on the Internet which will listen for messages. This channel can be identified by
its IP number and TCP port – for instance, 12.7.3.1:135. However, the pi calculus does
not represent the event of channel creation. Furthermore, its alpha-renaming and scope
extrusion make little sense in an implementation. We therefore propose a new rule:

(x)P ⇀ P{12.7.3.1:135/x}.

This means that the restriction command, upon execution, yields a state with a particular
freshly-created channel. If we start with the original pi calculus and add this rule, and
remove alpha-renaming and scope extrusion, the resulting calculus is in fact equivalent
(up to full abstraction) to the original calculus [11]. And it is more implementable.

We suggested in the previous section that channels might be co-located. To program
this, we proposed a modified restriction command

(x@y)P.

This indicates that the fresh channel x should be created in the same address space as y.

4 Conclusions

We believe that the pi calculus will prove a good language for writing concurrent and
distributed programs: it is simpler than threads, and it looks to be applicable to the full
range of programs from low-level device drivers to high-level systems integration. This
wide range gives rise to new motivations and new challenges in pi calculus research.

Why has the research community been slow to develop distributed implementa-
tions of the calculus? We feel that several unhelpful paradigms have hindered devel-
opment. In particular: the belief that continuation-less send commands are somehow
more implementable (they are not); the use of location-based calculi (these add needless
complexity); and the restriction operator (which is simply not implementable).

5

References

[1] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In POPL’96, pages 372–385. ACM Press.

[2] P. Gardner, C. Laneve, and L. Wischik. The fusion machine. In CONCUR 2002,
LNCS 2421:418–433.

[3] P. Gardner and L. Wischik. Explicit fusions. In MFCS 2000,
LNCS 1893:373–382.

[4] C. Laneve and B. Victor. Solos in concert. In ICALP’99, LNCS 1644:513–523.

[5] Microsoft Corp. Biztalk Server. http:// www.microsoft.com/ biztalk.

[6] R. Milner. Communicating and mobile systems: the Pi-calculus. Cambridge
University Press, 1999.

[7] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. In LICS’98, pages 176–185. Computer Society Press.

[8] J. Parrow. Trios in concert. In Proof, Language and Interaction: Essays in
Honour of Robin Milner, pages 621–637. MIT Press, 2000.

[9] P. Sewell, P. Wojciechowski, and B. Pierce. Location-independent
communication for mobile agents: a two-level architecture. Technical report,
University of Cambridge, 1999.

[10] L. Wischik. Explicit Fusions: Theory and Implementation. PhD thesis,
Computer Laboratory, University of Cambridge, 2001.

[11] L. Wischik. Old names for nu. In progress, 2002.

[12] L. Wischik. Fusion machine prototype. http:// www.cs.unibo.it/ fusion.

6

