Verifying arbitrary temporal formulas in the
temporal logic of actions

Lucian Wischik

In SRC Technical Note 1999-003. This report describes a summer project un-
dertaken by Lucian Wischik of the University of Cambridge, at Compaq Systems
Research Center. He was supervised by Leslie Lamport and Yuan Yu.

The Temporal Logic of Actions

“Engineers should be able to specify and verify their systems directly and conve-
niently in logic.” This aphorism provides a pragmatic motivation for Lamport’s
Temporal Logic of Actions, and for the associated model-checker TLC. It also
distinguishes TLC from other comparable model-checkers, where specifications
must be translated into a special-purpose language. (A model of a specified
system, in this context, is a sample execution trace. To ‘check’ a model is to
ensure that it satisfies the given verification conditions).

The goal of the project was to extend TLC to verify arbitrary temporal
formulas. Before, it could verify only “always” formulas about states:

“always, the state will be such with no dangling pointers”
Now it can verify more general formulas:

“if ever I put a datum into my reliable-transport-protocol, then it must
eventually come out the other end.”

To verify arbitrary temporal formulas about states is a standard problem, ad-
dressed by other model-checkers as well, and is solved using the “tableau” tech-
nique of Clark and Emerson (“Design and synthesis of synchronization skeletons
using branching time temporal logic”, 1981). We briefly outline this technique
below. (Temporal formulas are ones involving the predicates O always, or ¢
eventually. For instance, O(a = (b) means that every occurence of a must
eventually be followed by one of b).

However, new problems arise in the application of this technique to the
Temporal Logic of Actions. In fact, they arise as a direct consequence of the
very actions that give the logic its name. (Actions relate the next state of the
system to the current — they describe the transitions of the system. An example
action is 2’ =z + 1.)



Checking fairness: disjunctive normal forms

The first problem concerns fairness criteria. A fair transition is one that must
eventually be taken (assuming that it is possible). In convential model-checkers,
fairness is specified explicitly in the special-purpose specification language. For
example, to say that the scheduler must eventually allow the process to proceed,
we might write:

fair; x:=x+1;

In TLC, fairness is expressed as a logical predicate on actions. “Always, even-
tually, 2’ =z + 1.7
O0(x' =z +1)

Note that this is just a logic formula, and can appear anywhere in the spec-
ification or verification conditions (whereas the keyword fair can obviously
appear only as part of the specification program).

The new technique we introduced to deal with such formulas, in specifica-
tion or verification conditions, involves converting the problem into disjunctive
normal forms. These forms always have the same structure:

(OOea; A OOae; A miscy)
V' (OOeag A OOaes A miscs)
\Y

Observe that, within each disjunct, the fairness formulas ¢ and (¢ are all
gathered together. This gives for them a straightforward decision procedure: an
infinite cycle in the system’s behaviour satisfies OUlp if p is true everywhere in
the cycle; and it satisfies [JQq if ¢ is true somewhere in the cycle. We provided
an algorithm to convert arbitrary expressions into normal form, proved that
the conversion preserves meaning and that the normal forms are unique, and
implemented the decision procedure.

Checking arbitrary temporal formulas: tableau

The fairness formulas above are a generalisation of the fariness specifications
present in other model-checkers. But the Temporal Logic of Actions actually
allows even greater generality — it allows arbitrary temporal formulas involving
actions and states. To handle such formulas in full generality requires that the
standard tableau technique be modified to handle actions. Unfortunately, this
modification was not discovered until late in the summer, and there was not
time fully to develop the theory. (The disjunctive normal forms, although just
a special case, are still important: they are essentially an optimisation that
reduces the exponential cost of fairness tableau).

The tableau technique is as follows. To check whether a sample execution
trace satisfies a given temporal formula on states — for instance, —=(d(a =
Qb)) — we construct a particular (non-deterministic) finite state machine. This



machine accepts only those traces which satisfy the formula. We run the sample
execution-trace in parallel with the machine. If the trace is accepted by the
machine, then it satisfies the temporal formula! The machine for the example

formula is illustrated below.

<>

l

x=3 I\ []x#1

l

[Ix#1

@

The suggested modification of the technique, so that it can check arbitrary
formulas on actions as well as on states, is illustrated in the example machine

below.
\‘ <>...
[state
act!
[state
Implementation

The techniques described above, for conversion into disjunctive normal form
and for the tableau technique, were implemented within TLC. As presented, the
techniques may be prohibitively expensive in time and space. They have not
vet been tested on real-world examples. It also remains an open question as to
whether there is any significant practical, engineering benefit to the verification
of temporal formulas. Hopefully, the two new techniques introduced in this
summer project will eventually lead to an answer.



